1
|
Zhang H, Chai J, Cao C, Wang X, Pang W. Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway. Antioxidants (Basel) 2024; 13:507. [PMID: 38790612 PMCID: PMC11117624 DOI: 10.3390/antiox13050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Sperm quality is an important indicator to evaluate the reproduction ability of animals. Nicotinamide mononucleotide (NMN) participates in cell energy metabolism and reduces cell oxidative stress. However, the effect and regulatory mechanism of NMN on porcine sperm quality are still unknown. Here, 32 Landrace boars were randomly assigned to four groups (n = 8) and fed with different levels of NMN (0, 8, 16 or 32 mg/kg/d) for 9 weeks, and then serum and semen samples of the boars were collected to investigate the function and molecular mechanism of NMN in sperm quality. The results showed that the dietary NMN supplementation significantly increased sperm volume, density and motility (p < 0.05). Interestingly, NMN apparently improved the antioxidative indexes and increased the levels of testosterone (p < 0.05) in serum. Furthermore, NMN upregulated the protein levels of sirtuin 3 (SIRT3), antioxidation and oxidative phosphorylation (OXPHOS), but downregulated the protein levels of apoptosis in semen. Mechanically, NMN protected sperm from H2O2-induced oxidative stress and apoptosis through SIRT3 deacetylation. Importantly, the SIRT3-specific inhibitor 3-TYP attenuated the antioxidation and antiapoptosis of NMN in sperm. Therefore, NMN exerts antioxidation and antiapoptosis to improve boar sperm quality via the SIRT3 signaling pathway. Our findings suggest that NMN is a novel potential boar antioxidative feed additive to produce high-quality porcine semen.
Collapse
Affiliation(s)
| | | | | | | | - Weijun Pang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.Z.); (J.C.); (C.C.); (X.W.)
| |
Collapse
|
2
|
Kumawat BL, Kumar P, Mahla AS, Kumar A, Kumar A, Singh R, Kumar A. A novel action of insulin sensitizing drug as a potential promotor of preovulatory follicles, ovulation rate and prolificacy in sheep. Vet Res Commun 2024; 48:849-863. [PMID: 37957451 DOI: 10.1007/s11259-023-10259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The effect of the insulin-sensitizing drug metformin on preovulatory follicle (POF) number, ovulation rate, fetal rate and prolificacy was studied in forty-six cyclic Malpura ewes. After estrus synchronization, the ewes were equally divided into two groups (n = 23). The treatment group (MET) received a daily oral dose of metformin at a rate of 500 mg/animal for approximately 12 weeks, spanning five estrous cycles, as against untreated control (CON). All the ewes were bred to proven rams at the end of treatment. Ovarian ultrasound scans were performed at each estrus and day 9 of each cycle to assess the number and diameter of POFs and corpora lutea (CL), respectively. A comprehensive assessment of circulating hormones including, estradiol, progesterone, androstenedione, and insulin as well as metabolic indicators such as glucose, and lipid profile parameters was performed. At the end of treatment on the day of estrus (E5D0), the treatment showed a stimulatory effect on follicular development with a 53.2% (P < 0.001) increase in the number of POFs. It also increased the ovulation rate by 67.4% (P < 0.01), with a higher proportion (χ2df1 = 10.7, P < 0.001) of ewes in the MET group having multiple ovulations compared to the CON group (82.6 vs. 30.4%). With 1.48 ± 0.12 prolificacy rate in MET ewes, the proportion of ewes giving birth to multiple lambs was 2.9-fold higher than in the CON group. Plasma estradiol, insulin, glucose, total cholesterol, and LDL-cholesterol concentrations were lower (P < 0.05) in the MET ewes than in the CON. The results of the present study indicate that metformin can increase the number of POF, ovulation rate, fetal rate and prolificacy in ewes, while reducing the plasma estradiol, insulin, glucose and cholesterol in MET ewes.
Collapse
Affiliation(s)
- Babu Lal Kumawat
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
- Department of Animal Reproduction, Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Parbhani (MAFSU, Nagpur), Maharashtra, 431 402, India
| | - Pramod Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
| | - Ajit Singh Mahla
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India.
| | - Ashok Kumar
- ICAR-Central Sheep and Wool Research Institute, Arid Region Campus, Bikaner, Rajasthan, 334 006, India
| | - Amit Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Sciences, Bikaner (RAJUVAS), Rajasthan, 334 001, India
| | - Raghvendar Singh
- Animal Physiology and Biochemistry Division, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
| | - Arun Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304 501, India
| |
Collapse
|
3
|
Shen W, Fu Y, Bai H, Zhang Z, Cao Z, Liu Z, Yang C, Sun S, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature. Anim Biosci 2024; 37:640-654. [PMID: 38271968 PMCID: PMC10915220 DOI: 10.5713/ab.23.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. METHODS Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. RESULTS The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. CONCLUSION The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.
Collapse
Affiliation(s)
- Wenzheng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Haiyu Bai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zhiyu Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zibo Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Chao Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| |
Collapse
|
4
|
Li Y, Wang Y, An T, Tang Y, Shi M, Zhang W, Xue M, Wang X, Zhang J. Non-thermal plasma promotes boar sperm quality through increasing AMPK methylation. Int J Biol Macromol 2024; 257:128768. [PMID: 38096931 DOI: 10.1016/j.ijbiomac.2023.128768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality through reducing the oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows a great potential in assisted reproduction to solve the problem of male infertility.
Collapse
Affiliation(s)
- Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yao Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mei Shi
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenyu Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mengqing Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
5
|
Zhu C, Liu Q, Deng Y, Zheng L, Wang Y, Zhang L, Bu X, Qi M, Yang F, Dong W. Selenium nanoparticles improve fish sperm quality by enhancing glucose uptake capacity via AMPK activation. Theriogenology 2023; 208:88-101. [PMID: 37307736 DOI: 10.1016/j.theriogenology.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Appropriate additives can provide a suitable physiological environment for storage of fish sperm and facilitate the large-scale breeding of endangered species and commercial fish. Suitable additives for fish sperm storage in vitro are required for artificial insemination. This study evaluate the effects of 0.1, 0.5, 1.5, and 4.5 mg/L selenium nanoparticles (SeNPs) on the quality of Schizothorax prenanti and Onychostoma macrolepis sperm storage in vitro at 4 °C for 72 h. We found that 0.5 mg/L SeNPs was a suitable concentration for maintaining the normal physiological state of O. macrolepis sperm during storage at 4 °C (p < 0.05). Higher adenosine triphosphate (ATP) content of O. macrolepis sperm before and after activation was present at that concentration. To further explore the potential mechanism of action of SeNPs on O. macrolepis sperm, western blotting and glucose uptake analyses were performed. The results implied that after 24 h of in vitro preservation, 0.5 mg/L SeNPs significantly improved p-AMPK levels and glucose uptake capacity of O. macrolepis sperm, while compound C (CC), the inhibitor of activated AMP-activated protein kinase (p-AMPK), significantly restricted the function of SeNPs on stored sperm. Similar effects of 0.5 mg/L SeNPs were found on Schizothorax prenanti sperm. Our study demonstrates that SeNPs maintained ATP content and O. macrolepis and Schizothorax prenanti sperm function during storage in vitro for 72 h, possibly because SeNPs enhanced the glucose uptake capacity of sperm by maintaining the level of p-AMPK.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalong Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijun Zhang
- Ankang R&D Center of Se-enriched Products, Ankang, Shaanxi, 725000, China
| | - Xianpan Bu
- Ankang R&D Center of Se-enriched Products, Ankang, Shaanxi, 725000, China
| | - Meng Qi
- Ankang R&D Center of Se-enriched Products, Ankang, Shaanxi, 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Zhang X, Guo SM, Zhu DW, Li Y, Wen F, Xian M, Hu ZT, Zou QL, Zhang LK, Chen YL, Hu JH. Metformin improves sheep sperm cryopreservation via vitalizing the AMPK pathway. Theriogenology 2023; 208:60-70. [PMID: 37301167 DOI: 10.1016/j.theriogenology.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a key regulator of sperm function and physiological metabolism. Metformin, an inexpensive and effective antioxidant, is known to play an important role in the activation of AMPK. Therefore metformin has potential to improve sperm cryopreservation. The aim of this study was to investigate the effect of metformin during semen cryopreservation of sheep and to find the most effective concentration in freezing extender. Semen were cryopreserved with extender containing different concentrations of metformin (0, 0.25, 0.5, 1.0, 2.0 and 4.0 mmol/L). Sperm motility, acrosome integrity and plasma membrane integrity were measured after semen freezing and thawing. All results showed that sperm quality was significantly increased in the 1.0 mmol/L metformin-treated group compared with the control group (P < 0.05). In addition, the study showed that metformin effectively reduced the content of malondialdehyde (MDA) and reactive oxygen species (ROS), and increased the activity of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) of freeze-thawed sperm (P < 0.05). The optimal concentration of metformin was 1.0 mmol/L. Moreover, the results showed that AMPK was localized in the acrosome region, junction and midsection of sperm, and p-AMPK was distributed in the post-acrosomal region, junction and midsection. Western blot analysis indicated that 1.0 mmol/L metformin stimulated the phosphorylation of AMPK in sperm. Further results showed that 1.0 mmol/L metformin significantly increased the mitochondrial membrane potential (ΔΨm), ATP content, glucose uptake and lactate efflux of post-thawed sperm through the AMPK pathway, improved sperm quality, and increased the cleavage rate of in vitro fertilization (P < 0.05).
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Song-Mao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Da-Wei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhang-Tao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian-Long Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li-Kun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu-Lin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian-Hong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Tu W, Zhang W, Wang H, Zhang Y, Huang J, Li B, Li X, Tan Y, Wu X. Effects of Chinese herbal feed additives on the sperm quality and reproductive capacity in breeding boars. Front Vet Sci 2023; 10:1231833. [PMID: 37565082 PMCID: PMC10410075 DOI: 10.3389/fvets.2023.1231833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Currently, Chinese herbal feed additives (CHFA) are commonly utilized in domestic pig farms. However, their impact on the sperm quality and reproductive capacity of imported breeding boars has yet to be thoroughly explored. In this study, the effect of CHFA on the sperm quality and reproductive capacity of the imported Duroc boars was investigated. Sixteen boars were randomly divided into control group and experimental (CHFA treated) group and fed normal or CHFA-levels containing diets, respectively. The sperm quality and reproductive hormone levels were periodically tested, and the reproductive capacity with breeding sows were evaluated. The results showed that the CHFA treated group boars significantly improved sperm volume, sperm concentration, and motility and reduced the sperm abnormalities. Furthermore, the serum levels of reproductive hormone such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) in the CHFA treated group were significantly higher than those in the control group. Although there was no significant difference in the initial birth weight of piglets between the two groups, the CHFA treated group had a significantly higher average number of piglets born, the average number of piglets born alive, the number of piglets weaned at 28 days, and the weaning weight compared to the control group. These findings suggest that CHFA can significantly improve the sperm quality of breeding boars and enhance their reproductive hormone levels as well as the reproductive capacity, providing direct evidence for the further application of CHFA in the management of breeding boars in China.
Collapse
Affiliation(s)
- Weilong Tu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Institute of Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Weiyi Zhang
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yingying Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Ji Huang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bushe Li
- Institute of Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Xin Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yongsong Tan
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Institute of Shanghai Engineering Research Center of Breeding Pig, Shanghai, China
| | - Xiao Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
8
|
Antioxidants and Oxidants in Boar Spermatozoa and Their Surrounding Environment Are Associated with AMPK Activation during Liquid Storage. Vet Sci 2023; 10:vetsci10030214. [PMID: 36977253 PMCID: PMC10056163 DOI: 10.3390/vetsci10030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Activation of the AMP-activated protein kinase (AMPK) has been demonstrated to be beneficial for boar sperm quality and functionality, while the underlying mechanism of AMPK activation of boar spermatozoa remains obscure. This study aimed to explore the effect of antioxidants and oxidants in boar spermatozoa and their surrounding fluid (SF) on the activation of AMPK during the liquid storage. Ejaculates from Duroc boars, routinely used for semen production, were collected and diluted to a final concentration of 25 × 106/mL. In experiment 1, twenty-five semen samples from eighteen boars were stored at 17 °C for 7 days. In experiment 2, three pooled semen samples created from nine ejaculates of nine boars were used, and each sample was treated with 0, 0.1, 0.2, and 0.4 μM/L H2O2 and stored at 17 °C for 3 h. Sperm quality and functionality, antioxidants and oxidants in boar spermatozoa and SF, the intracellular AMP/ATP ratio, and the expression levels of the phosphorylated AMPK (Thr172) were determined. Sperm quality significantly decreased with storage time in terms of viability (p < 0.05). Antioxidant and oxidant levels were markedly affected with storage time, with a decline in the SF total antioxidant capacity (TAC) (p < 0.05), SF malondialdehyde (MDA) (p < 0.05), and the sperm’s total oxidant status (TOS), as well as a fluctuation in sperm superoxidase dismutase-like (SOD-like) activity (p < 0.05). The intracellular AMP/ATP ratio increased (p < 0.05) on day 4 and subsequently decreased to its lowest value on days 6 and 7 (p < 0.05). The phosphorylated AMPK levels increased from day 2 to day 7 (p < 0.05). Correlation analyses indicate that sperm quality during liquid storage was correlated to antioxidants and oxidants in spermatozoa and SF (p < 0.05), which were correlated to the phosphorylation of sperm AMPK (p < 0.05). Treatment with H2O2 induced damages in sperm quality (p < 0.05), a decline in antioxidant levels (SF TAC, p < 0.05; sperm SOD-like activity, p < 0.01), an increase in oxidant levels (SF MDA, p < 0.05; intracellular ROS production, p < 0.05), a higher AMP/ATP ratio (p < 0.05), and phosphorylated AMPK levels (p < 0.05) in comparison with the control. The results suggest that antioxidants and oxidants in boar spermatozoa and SF are involved in AMPK activation during liquid storage.
Collapse
|
9
|
Liu Q, Zhu C, Ma Y, Wang Y, Zheng L, Jin T, He S, Yang F, Dong W. Metformin improves fish sperm quality by regulating glucose uptake capacity during in vitro storage. J Anim Sci 2023; 101:skad152. [PMID: 37191447 PMCID: PMC10237230 DOI: 10.1093/jas/skad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
A suitable additive for fish sperm storage in vitro is necessary for artificial reproduction. In this study, we evaluated the effects of different concentrations (100, 200, 400, and 800 µmol/L) of metformin (Met) on Schizothorax prenanti and Onychostoma macrolepis sperm under storage in vitro for 72 h. Compared with the control group, 400 µmol/L Met was more effective at improving the quality and fertilization capacity of S. prenanti sperm by increasing the adenosine triphosphate (ATP) content within the sperm. Further study found that Met stabilized the ATP level by enhancing the glucose uptake in S. prenanti sperm, and this effect might be associated with the activation of AMP-activated protein kinase (AMPK) in sperm. In this study, we also found that glucose could be absorbed by the sperm of S. prenanti, which was mainly accumulated in the midpiece of S. prenanti sperm, where mitochondria were located. In addition, Compound C significantly inhibited the beneficial effects of Met on the quality and glucose uptake capacity of S. prenanti sperm by inhibiting AMPK phosphorylation. These results revealed that AMPK played an important role in vitro sperm storage, and Met maintained ATP content and increased the storage time of S. prenanti sperm in vitro for 72 h, possibly due to Met enhanced glucose uptake capacity of sperm by activating AMPK. Similarly, the beneficial effects of Met on S. prenanti sperm were also found in O. macrolepis sperm, suggesting that Met may hold great promise for the practice of storing fish in vitro.
Collapse
Affiliation(s)
- Qimin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijuan Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Yang W, Deng J, Gao J, Yang H, Chen Q, Niya Z, Ling X, Zhang G, Zou P, Sun L, Huang L, Liu J, Cao J, Ao L. Associations between isoflavone exposure and reproductive damage in adult males: evidence from human and model system studies. Biol Reprod 2022; 107:1360-1373. [PMID: 35948002 DOI: 10.1093/biolre/ioac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/21/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
It's controversial whether exposure to isoflavones, constituents of certain plants such as soy bean, exerts male reproductive toxicity. This study was designed to investigate whether isoflavone exposure during adulthood could have deleterious impacts on male reproductive health by the cross-sectional study, animal experiments, and in vitro tests. In the cross-sectional study, we observed that urinary isoflavones were not significantly associated with semen quality including sperm concentrations, sperm count, progressive motility, and total motility, respectively (All P-value for trend>0.05). However, negative associations were found between plasma testosterone and urinary Σisoflavones, genistein, glycitein, and dihydrodaidzein (all P-value for trend <0.05). In the animal experiments, serum and intratesticular testosterone levels were decreased in mice exposed to several dosages of genistein. Genistein administration caused up-regulation of estrogen receptor alpha (ERα) and down-regulation of cytochrome P45017A1 (CYP17A1) protein levels in testes of mice. However, genistein treatment during adulthood did not induce appreciable structural damages of reproductive system in mice. In vitro tests, we observed that genistein of different dosages (0.01, 2.5, 10 μM) caused a concentration dependent inhibition of testosterone production by TM3 Leydig cells (half-maximal inhibitory concentration = 3.796 nM, P < 0.05). Elevated protein expression of ERα and decreased mRNA/protein level of CYP17A1 were also observed in genistein-treated cells. Protein level of CYP17A1 and testosterone concentration were significantly restored in the ERα siRNA-transfected cells, compared to cells that treated with genistein alone (P < 0.05). The results demonstrate that exposure to isoflavones during adulthood may be associated with alterations of reproductive hormones. Particularly for genistein, which inhibits testosterone biosynthesis through up-regulation of ERα in Leydig cells of mice, might induce the disruption of testosterone production in human. The present study provides novel perspective into potential targets for male reproductive compromise induced by isoflavone exposure.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jiuyang Deng
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jianfang Gao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Zhou Niya
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Guowei Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Gaotanyan St 30, Chongqing 400038, China
| |
Collapse
|
11
|
Zhao J, Yang PC, Yang H, Wang ZB, El-Samahy M, Wang F, Zhang YL. Dietary supplementation with metformin improves testis function and semen quality and increases antioxidants and autophagy capacity in goats. Theriogenology 2022; 188:79-89. [DOI: 10.1016/j.theriogenology.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
12
|
Lan Q, Xue L, Cao J, Xie Y, Xiao T, Fang S. Caffeic Acid Phenethyl Ester (CAPE) Improves Boar Sperm Quality and Antioxidant Capacity in Liquid Preservation (17°C) Linked to AMPK Activity Maintenance. Front Vet Sci 2022; 9:904886. [PMID: 35754532 PMCID: PMC9219730 DOI: 10.3389/fvets.2022.904886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 μmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 μmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li'e Xue
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacheng Cao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingyu Xie
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Zhu Z, Zhang W, Li R, Zeng W. Reducing the Glucose Level in Pre-treatment Solution Improves Post-thaw Boar Sperm Quality. Front Vet Sci 2022; 9:856536. [PMID: 35433908 PMCID: PMC9009312 DOI: 10.3389/fvets.2022.856536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Frozen–thawed boar sperm was not widely used in pig artificial insemination as the sperm quality was damaged by biochemical and physical modifications during the cryopreservation process. The aim of this study was to investigate whether reduction of the glucose level in diluted medium could protect the post-thaw boar sperm or not. Boar sperm was diluted with the pre-treatment medium with different doses of glucose (153, 122.4, 91.8, 61.2, 30.6, and 0 mM) during the cooling process. The sperm motility patterns and glycolysis were evaluated during the cooling process. Meanwhile, the post-thaw sperm quality, ATP level, mitochondrial function as well as apoptosis were also measured. It was observed that 153 mM glucose treatment showed the highest glycolysis in boar sperm as the activities of hexokinase, fructose-bisphosphate aldolase A, and lactate dehydrogenase are the highest as well as the lactate level. Reduction of the glucose level from 153 to 30.6 mM suppressed sperm glycolysis. In addition, treatment with 153 mM glucose made the sperm demonstrate a circle-like movement along with a high value of curvilinear velocity and amplitude of the lateral head, while decreasing the glucose level reduced those patterns in the cooling process. Moreover, reduction of the glucose level also significantly increased the post-thaw sperm's total motility, progressive motility, straight-linear velocity, membrane integrity, and acrosome integrity. The treatment with 30.6 mM glucose showed the highest value among the treatments. Furthermore, the post-thaw sperm's succinate dehydrogenase activity, malate dehydrogenase activity, mitochondrial membrane potential as well as ATP level were increased by reducing the glucose level from 153 to 30.6 mM. Interestingly, the treatment with 30.6 mM glucose showed the lowest apoptosis of post-thaw sperm among the treatments. Those observations suggest that reduction of the glucose level in diluted medium increased the post-thaw boar sperm quality via decreasing the glycolytic metabolism. These findings provide novel insights that reduction of boar sperm activity via decreasing sperm glycolysis during the cooling process helps to improve the post-thaw sperm quality during cryopreservation.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weijing Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Rongnan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Wenxian Zeng
| |
Collapse
|
14
|
Li R, Wu X, Zhu Z, Lv Y, Zheng Y, Lu H, Zhou K, Wu D, Zeng W, Dong W, Zhang T. Polyamines protect boar sperm from oxidative stress in vitro. J Anim Sci 2022; 100:6542920. [PMID: 35247050 PMCID: PMC9030141 DOI: 10.1093/jas/skac069] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sperm are susceptible to excessive reactive oxygen species (ROS). Spermine and spermidine are secreted in large amounts by the prostate and potent natural free radical scavengers and protect cells against redox disorder. Thus, we used boar sperm as a model to study the polyamines uptake and elucidate whether polyamines protected sperm from ROS stress. Seven mature and fertile Duroc boars (aged 15 to 30 mo) were used in this study. In experiment 1, spermine and spermidine (3.6 ± 0.3 and 3.3 ± 0.2 mmol/L, respectively) were abundant in seminal plasma, and the content of polyamine decreased (P < 0.05) after preservation at 17 °C for 7 d or incubation at 37 °C for 6 h. In experiment 2, using labeling of spermine or spermidine by conjugation with fluorescein isothiocyanate and ultra-high-performance liquid chromatography, we found that the accumulation of spermine or spermidine in sperm was inhibited by quinidine and dl-tetrahydropalmatine (THP, organic cation transporters [OCT] inhibitors, P < 0.05), but not mildronate and l-carnitine (organic cation/carnitine transporter [OCTN] inhibitors, P > 0.05). In experiment 3, the addition of spermine or spermidine (0.5 mmol/L) in the extender resulted in higher motility, plasma membrane and acrosome integrity, and lower ROS level after preservation in vitro at 17 °C for 7 d (P < 0.05). In experiment 4, in the condition of oxidative stress (treatment with H2O2 at 37 °C for 2 h), the addition of spermine (1 mmol/L) or spermidine (0.5 mmol/L) in extender increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase; reduced glutathione and oxidized glutathione ratio (P < 0.05); and alleviate oxidative stress-induced lipid peroxidation, DNA damage, mitochondrial membrane potential (ΔΨm) decline, adenosine triphosphate depletion, and intracellular calcium concentration ([Ca2+]i) overload (P < 0.05), thereby improving boar sperm motility, the integrity of plasma membrane and acrosome (P < 0.05) in vitro. These data suggest that spermine and spermidine alleviate oxidative stress via the antioxidant capacity, thereby improving the efficacy of boar semen preservation.
Collapse
Affiliation(s)
- Rongnan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan, Shandong 250000, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China,Corresponding author:
| | - Wuzi Dong
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| |
Collapse
|
15
|
Ren F, Xi H, Ren Y, Li Y, Wen F, Xian M, Zhao M, Zhu D, Wang L, Lei A, Hu J. TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos. J Anim Sci Biotechnol 2021; 12:89. [PMID: 34340711 PMCID: PMC8330071 DOI: 10.1186/s40104-021-00613-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Background Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion. To derive greater economic benefit, farmers require more female offspring (does); however, the buck-to-doe offspring sex ratio is approximately 50%. At present, artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring. However, flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats. Results In this study, a novel, simple goat sperm sexing technology that activates the toll-like receptor 7/8 (TLR7/8), thereby inhibiting X-sperm motility, was investigated. Our results showed that the TLR7/8 coding goat X-chromosome was expressed in approximately 50% of round spermatids in the testis and sperm, as measured from cross-sections of the epididymis and ejaculate, respectively. Importantly, TLR7/8 was located at the tail of the X-sperm. Upon TLR7/8 activation, phosphorylated forms of glycogen synthase kinase α/β (GSK3 α/β) and nuclear factor kappa-B (NF-κB) were detected in the X-sperm, causing reduced mitochondrial activity, ATP levels, and sperm motility. High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm, to the lower layer. Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer, 80.52 ± 6.75% of the embryos were XX females. The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response; nine embryos were collected from the uterus of two does that conceived. Eight of these were XX embryos, and one was an XY embryo. Conclusions Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3 α/β-hexokinase pathway; this technique could be used to facilitate the efficient production of sexed dairy goat embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00613-y.
Collapse
Affiliation(s)
- Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yijie Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mengjie Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dawei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Lv Y, Li T, Yang M, Su L, Zhu Z, Zhao S, Zeng W, Zheng Y. Melatonin Attenuates Chromium (VI)-Induced Spermatogonial Stem Cell/Progenitor Mitophagy by Restoration of METTL3-Mediated RNA N 6-Methyladenosine Modification. Front Cell Dev Biol 2021; 9:684398. [PMID: 34150779 PMCID: PMC8212693 DOI: 10.3389/fcell.2021.684398] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and any damage to SSCs may result in spermatogenic disorder and male infertility. Chromium (Cr) (VI) is a proven toxin, mutagen, and carcinogen, perpetually detrimental to environmental organisms due to its intricate and enduring detoxification process in vivo. Despite this, the deleterious effects of Cr (VI) on SSCs and the underlying mechanisms remain poorly understood. In this study, we identified that Cr (VI) impaired male reproductive system in mouse testes and induced mitochondrial dynamic imbalance and mitophagy in SSCs/progenitors. Cr (VI) also downregulated the RNA N6-methyladenosine (m6A) modification levels in mitochondrial dynamic balance and mitophagy genes in SSCs/progenitors. Inspiringly, the toxic effects of Cr (VI) could be relieved by melatonin pretreatment. Melatonin alleviated Cr (VI)-induced damage to male reproductive system and autophagy in mouse testes. Melatonin also attenuated Cr (VI)-induced cell viability loss and reactive oxygen species (ROS) generation, as well as mitochondrial dynamic disorders and mitophagy in SSCs/progenitors. The protective roles of melatonin against Cr (VI)-induced mitophagy were exerted by restoration of METTL3-mediated RNA m6A modification and activation of mitochondrial fusion proteins MFN2 and OPA1, as well as inhibition of the mitophagy BNIP3/NIX receptor pathway. Thus, our study provides novel insights into the molecular mechanisms for RNA m6A modification underlying the gene regulatory network responsible for mitochondrial dynamic balance, and also lays new experimental groundwork for treatment of Cr (VI)-induced damage to male fertility.
Collapse
Affiliation(s)
- Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.,Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Manman Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Lihong Su
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Sihang Zhao
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|