1
|
Hu J, Gui L, Wu Z, Huang L. Construction of the porcine genome mobile element variations and investigation of its role in population diversity and gene expression. J Anim Sci Biotechnol 2024; 15:162. [PMID: 39627810 PMCID: PMC11616153 DOI: 10.1186/s40104-024-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Mobile element variants (MEVs) have a significant and complex impact on genomic diversity and phenotypic traits. However, the quantity, distribution, and relationship with gene expression and complex traits of MEVs in the pig genome remain poorly understood. RESULTS We constructed the most comprehensive porcine MEV library based on high-depth whole genome sequencing (WGS) data from 747 pigs across 59 breeds worldwide. This database identified a total of 147,993 polymorphic MEVs, including 121,099 short interspersed nuclear elements (SINEs), 26,053 long interspersed nuclear elements (LINEs), 802 long terminal repeats (LTRs), and 39 other transposons, among which 54% are newly discovered. We found that MEVs are unevenly distributed across the genome and are strongly influenced by negative selection effects. Importantly, we identified 514, 530, and 584 candidate MEVs associated with population differentiation, domestication, and breed formation, respectively. For example, a significantly differentiated MEV is located in the ATRX intron between Asian and European pigs, whereas ATRX is also differentially expressed between Asian and European pigs in muscle tissue. In addition, we identified 4,169 expressed MEVs (eMEVs) significantly associated with gene expression and 6,914 splicing MEVs (sMEVs) associated with gene splicing based on RNA-seq data from 266 porcine liver tissues. These eMEVs and sMEVs explain 6.24% and 9.47%, respectively, of the observed cis-heritability and highlight the important role of MEVs in the regulation of gene expression. Finally, we provide a high-quality SNP-MEV reference haplotype panel to impute MEV genotypes from genome-wide SNPs. Notably, we identified a candidate MEV significantly associated with total teat number, demonstrating the functionality of this reference panel. CONCLUSIONS The present investigation demonstrated the importance of MEVs in pigs in terms of population diversity, gene expression and phenotypic traits, which may provide useful resources and theoretical support for pig genetics and breeding.
Collapse
Affiliation(s)
- Jianchao Hu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Lu Gui
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhongzi Wu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, People's Republic of China.
| |
Collapse
|
2
|
Chen C, Du Z, Zheng Y, Chen H, Saleh AA, Yang N, Wang M, Azele P, Wang X, Song C. Investigation of Polymorphisms Induced by the Solo Long Terminal Repeats (Solo-LTRs) in Porcine Endogenous Retroviruses (ERVs). Viruses 2024; 16:1801. [PMID: 39599915 PMCID: PMC11598996 DOI: 10.3390/v16111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Homologous recombination events take place between the 5' and 3' long terminal repeats (LTRs) of ERVs, resulting in the generation of solo-LTR, which can cause solo-LTR-associated polymorphism across different genomes. In the current study, specific criteria were established for the filtration of solo-LTRs, resulting in an average of 5630 solo-LTRs being identified in 21 genomes. Subsequently, a protocol was developed for detecting solo-LTR polymorphisms in the pig genomes, resulting in the discovery of 927 predicted solo-LTR polymorphic sites. Following verification and filtration processes, 603 highly reliable solo-LTR polymorphic sites were retained, involving 446 solo-LTR presence sites (solo-LTR+) and 157 solo-LTR absence sites (solo-LTR-) relative to the reference genome. Intersection analysis with gene/functional regions revealed that 248 solo-LTR- sites and 23 solo-LTR+ sites overlapped with genes or were in the vicinity of genes or functional regions, impacting a diverse range of gene structures. Moreover, through the utilization of 156 solo-LTR polymorphic sites for population genetic analysis, it was observed that these solo-LTR loci effectively clustered various breeds together, aligning with expectations and underscoring their practical utility. This study successfully established a methodology for detecting solo-LTR polymorphic sites. By applying these methods, a total of 603 high-reliability solo-LTR polymorphic sites were pinpointed, with nearly half of them being linked to genes or functional regions.
Collapse
Affiliation(s)
- Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhanyu Du
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China;
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Hong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Phiri Azele
- Ministry of Fisheries and Livestock, Animal Science and Technology, Zambia Institute of Animal Health, Mazabuka 670237, Zambia;
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.Z.); (H.C.); (A.A.S.); (N.Y.); (M.W.); (X.W.)
| |
Collapse
|
3
|
Wang X, Liu TX, Zhang Y, Xu LW, Yuan SL, Cui AL, Guo WW, Wang YF, Yang SM, Zhao JG. Genetically modified pigs: Emerging animal models for hereditary hearing loss. Zool Res 2024; 45:284-291. [PMID: 38485498 PMCID: PMC11017082 DOI: 10.24272/j.issn.2095-8137.2023.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Hereditary hearing loss (HHL), a genetic disorder that impairs auditory function, significantly affects quality of life and incurs substantial economic losses for society. To investigate the underlying causes of HHL and evaluate therapeutic outcomes, appropriate animal models are necessary. Pigs have been extensively used as valuable large animal models in biomedical research. In this review, we highlight the advantages of pig models in terms of ear anatomy, inner ear morphology, and electrophysiological characteristics, as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss. Additionally, we discuss the prospects, challenges, and recommendations regarding the use pig models in HHL research. Overall, this review provides insights and perspectives for future studies on HHL using porcine models.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tian-Xia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang-Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuo-Long Yuan
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - A-Long Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Wei-Wei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan-Fang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shi-Ming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China. E-mail:
| | - Jian-Guo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. E-mail:
| |
Collapse
|
4
|
Hawthorne WJ. Ethical and legislative advances in xenotransplantation for clinical translation: focusing on cardiac, kidney and islet cell xenotransplantation. Front Immunol 2024; 15:1355609. [PMID: 38384454 PMCID: PMC10880189 DOI: 10.3389/fimmu.2024.1355609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
In this state-of-the-art review we detail the journey of xenotransplantation from its infancy, detailing one of the first published cases and the subsequent journey the field took in its inception and development. With a focus on the science, technological advances, precautions required along with the potential limitations in application, the ethics, guidance's, and legislative advances that are required to reach the safe and efficacious clinical application of xenotransplantation. Along with a view over the past several decades with the overall significant advancements in pre-clinical study outcomes particularly in islet, kidney, and heart xenotransplantation, to ultimately reach the pinnacle of successful clinical heart and kidney xenotransplants. It outlines the importance for the appropriate guidance's required to have been developed by experts, scientists, clinicians, and other players who helped develop the field over the past decades. It also touches upon patient advocacy along with perspectives and expectations of patients, along with public opinion and media influence on the understanding and perception of xenotransplantation. It discusses the legislative environment in different jurisdictions which are reviewed in line with current clinical practices. All of which are ultimately based upon the guidance's developed from a strong long-term collaboration between the International Xenotransplantation Association, the World Health Organisation and The Transplantation Society; each having constantly undertaken consultation and outreach to help develop best practice for clinical xenotransplantation application. These clearly helped forge the legislative frameworks required along with harmonization and standardization of regulations which are detailed here. Also, in relation to the significant advances in the context of initial xeno-kidney trials and the even greater potential for clinical xeno-islet trials to commence we discuss the significant advantages of xenotransplantation and the ultimate benefit to our patients.
Collapse
Affiliation(s)
- Wayne J. Hawthorne
- The Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Department of Surgery, School of Medical Sciences, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
5
|
Jiang T, Zhou ZM, Ling ZQ, Zhang Q, Wu ZZ, Yang JW, Yang SY, Yang B, Huang LS. Pig H3K4me3, H3K27ac, and gene expression profiles reveal reproductive tissue-specific activity of transposable elements. Zool Res 2024; 45:138-151. [PMID: 38155423 PMCID: PMC10839656 DOI: 10.24272/j.issn.2095-8137.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 12/30/2023] Open
Abstract
Regulatory sequences and transposable elements (TEs) account for a large proportion of the genomic sequences of species; however, their roles in gene transcription, especially tissue-specific expression, remain largely unknown. Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations. Here, we conducted an integrated analysis using H3K27ac ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs. We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages. Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity, results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3. Furthermore, 1.45% of TEs overlapped with either the H3K27ac or H3K4me3 peaks, with the majority displaying tissue-specific activity. Notably, a TE subfamily (LTR4C_SS), containing binding motifs for SIX1 and SIX4, showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries. RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes, including 4 688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression. Of note, 1 967 TE-containing transcripts were enriched in the testes. We identified a long terminal repeat (LTR), MLT1F1, acting as a testis-specific alternative promoter in SRPK2 (a cell cycle-related protein kinase) in our pig dataset. This element was also conserved in humans and mice, suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns. Collectively, our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions, particularly in the reproductive organs.
Collapse
Affiliation(s)
- Tao Jiang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi-Min Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zi-Qi Ling
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Qing Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhong-Zi Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jia-Wen Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Si-Yu Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
6
|
Fiebig U, Krüger L, Denner J. Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C. Microorganisms 2024; 12:98. [PMID: 38257925 PMCID: PMC10820294 DOI: 10.3390/microorganisms12010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated.
Collapse
Affiliation(s)
- Uwe Fiebig
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Luise Krüger
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
| | - Joachim Denner
- Robert Koch Institute, 13353 Berlin, Germany; (U.F.); (L.K.)
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
7
|
Zhou Y, Zhou S, Wang Q, Zhang B. Mitigating Cross-Species Viral Infections in Xenotransplantation: Progress, Strategies, and Clinical Outlook. Cell Transplant 2024; 33:9636897241226849. [PMID: 38258759 PMCID: PMC10807386 DOI: 10.1177/09636897241226849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Xenotransplantation holds great promise as a solution to address the critical shortage of organs, but it raises concerns regarding the potential transmission of porcine viruses to recipients, leading to infections and even zoonotic diseases. Data used in this review were mainly from literature of Pubmed database. Keywords included xenotransplantation, infection, virus, and epidemiology. The original articles and critical reviews selected were relevant to this review's theme. We review the major viral infections of concern in xenotransplantation, their risk of transmission, diagnosis, treatment, and ways to prevent infection. Then, we pivot to a comprehensive overview of the current status of xenotransplantation. In addition, we offer our own insights and recommendations for propelling xenotransplantation forward, transitioning from preclinical experiments to the critical phase of clinical trials. Viral infections pose considerable safety concerns within xenotransplantation, particularly with the possibility of emerging or currently unidentified viruses. Clinical trials serve as a crucial platform to progress the safety standards of xenotransplantation. However, further studies and dedicated efforts are required to effectively translate findings into practical applications that can improve safety measures in this field.
Collapse
Affiliation(s)
- Yenong Zhou
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shuyu Zhou
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qian Wang
- Nutriology Department, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. J Anim Sci Biotechnol 2023; 14:136. [PMID: 37805653 PMCID: PMC10559557 DOI: 10.1186/s40104-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|