1
|
Mikhailova E, Popov A, Roumiantseva J, Budanov O, Lagoyko S, Zharikova L, Miakova N, Litvinov D, Khachatryan L, Pshonkin A, Ponomareva N, Boichenko E, Varfolomeeva S, Dinikina J, Novichkova G, Henze G, Karachunskiy A. Blinatumomab as postremission therapy replaces consolidation and substantial parts of maintenance chemotherapy and results in stable MRD negativity in children with newly diagnosed B-lineage ALL. J Immunother Cancer 2024; 12:e008213. [PMID: 38844406 PMCID: PMC11163637 DOI: 10.1136/jitc-2023-008213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
The bispecific T cell-binding antibody blinatumomab (CD19/CD3) is widely and successfully used for the treatment of children with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Here, we report the efficacy of a single course of blinatumomab instead of consolidation chemotherapy to eliminate minimal residual disease (MRD) and maintain stable MRD-negativity in children with primary BCP-ALL.Between February 2020 and November 2022, 177 children with non-high-risk BCP-ALL were enrolled in the ALL-MB 2019 pilot study (NCT04723342). Patients received the usual risk-adapted induction therapy according to the ALL-MB 2015 protocol. Those who achieved a complete remission at the end of induction (EOI) received treatment with blinatumomab immediately after induction at a dose of 5 μg/m2/day for 7 days and 21 days at a dose of 15 μg/m2/day, followed by 12 months of maintenance therapy. MRD was measured using multicolor flow cytometry (MFC) at the EOI, then immediately after blinatumomab treatment, and then four times during maintenance therapy at 3-month intervals.All 177 patients successfully completed induction therapy and achieved a complete hematological remission. In 174 of these, MFC-MRD was measured at the EOI. 143 patients (82.2%) were MFC-MRD negative and the remaining 31 patients had varying degrees of MFC-MRD positivity.MFC-MRD was assessed in all 176 patients who completed the blinatumomab course. With one exception, all patients achieved MFC-MRD negativity after blinatumomab, regardless of the MFC-MRD score at EOI. One adolescent girl with high MFC-MRD positivity at EOI remained MFC-MRD positive. Of 175 patients who had completed 6 months of maintenance therapy, MFC-MRD data were available for 156 children. Of these, 155 (99.4%) were MFC-MRD negative. Only one boy with t(12;21) (p13;q22)/ETV6::RUNX1 became MFC-MRD positive again. The remaining 174 children had completed the entire therapy. MFC-MRD was examined in 154 of them, and 153 were MFC-MRD negative. A girl with hypodiploid BCP-ALL showed a reappearance of MFC-MRD with subsequent relapse.In summary, a single 28-day course of blinatumomab immediately after induction, followed by 12 months of maintenance therapy, is highly effective in achieving MRD-negativity in children with newly diagnosed non-high risk BCP-ALL and maintaining MRD-negative remission at least during the treatment period.
Collapse
Affiliation(s)
- Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Julia Roumiantseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Oleg Budanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Lagoyko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Liudmila Zharikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Natalia Miakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Dmitry Litvinov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Lili Khachatryan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Pshonkin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | | | - Elmira Boichenko
- City Children's Hospital No 1, Saint Petersburg, Russian Federation
| | | | - Julia Dinikina
- Almazov National Medical Research Center, Saint Petersburg, Russian Federation
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| | - Guenter Henze
- Pediatric Hematology and Oncology, Ernst Moritz Arndt University Greifswald Faculty of Medicine, Greifswald, Mecklenburg-Vorpommern, Germany
- Pediatric Hematology and Oncology, Charite Medical Faculty Berlin, Berlin, Berlin, Germany
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
2
|
Popov A, Henze G, Tsaur G, Budanov O, Roumiantseva J, Belevtsev M, Verzhbitskaya T, Movchan L, Lagoyko S, Zharikova L, Olshanskaya Y, Riger T, Valochnik A, Miakova N, Litvinov D, Khlebnikova O, Streneva O, Stolyarova E, Ponomareva N, Novichkova G, Aleinikova O, Fechina L, Karachunskiy A. Flow cytometric minimal residual disease measurement accounting for cytogenetics in children with non-high-risk acute lymphoblastic leukemia treated according to the ALL-MB 2008 protocol. Cancer Med 2024; 13:e7172. [PMID: 38651186 PMCID: PMC11036069 DOI: 10.1002/cam4.7172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Quantitative measurement of minimal residual disease (MRD) is the "gold standard" for estimating the response to therapy in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Nevertheless, the speed of the MRD response differs for different cytogenetic subgroups. Here we present results of MRD measurement in children with BCP-ALL, in terms of genetic subgroups with relation to clinically defined risk groups. METHODS A total of 485 children with non-high-risk BCP-ALL with available cytogenetic data and MRD studied at the end-of-induction (EOI) by multicolor flow cytometry (MFC) were included. All patients were treated with standard-risk (SR) of intermediate-risk (ImR) regimens of "ALL-MB 2008" reduced-intensity protocol. RESULTS AND DISCUSSION Among all study group patients, 203 were found to have low-risk cytogenetics (ETV6::RUNX1 or high hyperdiploidy), while remaining 282 children were classified in intermediate cytogenetic risk group. For the patients with favorable and intermediate risk cytogenetics, the most significant thresholds for MFC-MRD values were different: 0.03% and 0.04% respectively. Nevertheless, the most meaningful thresholds were different for clinically defined SR and ImR groups. For the SR group, irrespective to presence/absence of favorable genetic lesions, MFC-MRD threshold of 0.1% was the most clinically valuable, although for ImR group the most informative thresholds were different in patients from low-(0.03%) and intermediate (0.01%) cytogenetic risk groups. CONCLUSION Our data show that combining clinical risk factors with MFC-MRD measurement is the most useful tool for risk group stratification of children with BCP-ALL in the reduced-intensity protocols. However, this algorithm can be supplemented with cytogenetic data for part of the ImR group.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Guenter Henze
- Department of Pediatric Oncology HematologyCharité—Universitätsmedizin BerlinBerlinGermany
| | - Grigory Tsaur
- Regional Children's HospitalEkaterinburgRussian Federation
- Research Institute of Medical Cell TechnologiesEkaterinburgRussian Federation
- Ural State Medical UniversityEkaterinburgRussian Federation
| | - Oleg Budanov
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Julia Roumiantseva
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Mikhail Belevtsev
- Republican Scientific and Practical Center for Pediatric OncologyHematology and ImmunologyMinskBelarus
| | - Tatiana Verzhbitskaya
- Regional Children's HospitalEkaterinburgRussian Federation
- Research Institute of Medical Cell TechnologiesEkaterinburgRussian Federation
| | - Liudmila Movchan
- Republican Scientific and Practical Center for Pediatric OncologyHematology and ImmunologyMinskBelarus
| | - Svetlana Lagoyko
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Liudmila Zharikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Yulia Olshanskaya
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Tatiana Riger
- Regional Children's HospitalEkaterinburgRussian Federation
| | - Alena Valochnik
- Republican Scientific and Practical Center for Pediatric OncologyHematology and ImmunologyMinskBelarus
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Dmitry Litvinov
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | | | - Olga Streneva
- Regional Children's HospitalEkaterinburgRussian Federation
- Research Institute of Medical Cell TechnologiesEkaterinburgRussian Federation
| | | | - Natalia Ponomareva
- Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Olga Aleinikova
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| | - Larisa Fechina
- Regional Children's HospitalEkaterinburgRussian Federation
- Research Institute of Medical Cell TechnologiesEkaterinburgRussian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and ImmunologyMoscowRussian Federation
| |
Collapse
|
3
|
Permikin Z, Popov A, Verzhbitskaya T, Riger T, Plekhanova O, Makarova O, Froňková E, Trka J, Meyer C, Marschalek R, Tsaur G, Fechina L. Lineage switch to acute myeloid leukemia during induction chemotherapy for early T-cell precursor acute lymphoblastic leukemia with the translocation t(6;11)(q27;q23)/KMT2A-AFDN: A case report. Leuk Res 2021; 112:106758. [PMID: 34864370 DOI: 10.1016/j.leukres.2021.106758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Zhan Permikin
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Ural State Medical University, Ekaterinburg, Russian Federation
| | - Alexander Popov
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St., 117998, Moscow, Russia.
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Tatiana Riger
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Plekhanova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Olga Makarova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Eva Froňková
- Charles University, CLIP, Prague, Czech Republic; Motol University Hospital, Prague, Czech Republic
| | - Jan Trka
- Charles University, CLIP, Prague, Czech Republic; Motol University Hospital, Prague, Czech Republic
| | - Claus Meyer
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Frankfurt am Main, Germany
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Ural State Medical University, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| |
Collapse
|
4
|
The use of additional immunophenotypic criteria for the differential diagnosis of Burkitt lymphoma/leukemia: An exemplary case report. Leuk Res 2021; 110:106662. [PMID: 34242914 DOI: 10.1016/j.leukres.2021.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
|
5
|
Mikhailova E, Semchenkova A, Illarionova O, Kashpor S, Brilliantova V, Zakharova E, Zerkalenkova E, Zangrando A, Bocharova N, Shelikhova L, Diakonova Y, Zhogov V, Khismatullina R, Molostova O, Buldini B, Raykina E, Larin S, Olshanskaya Y, Miakova N, Novichkova G, Maschan M, Popov AM. Relative expansion of CD19-negative very-early normal B-cell precursors in children with acute lymphoblastic leukaemia after CD19 targeting by blinatumomab and CAR-T cell therapy: implications for flow cytometric detection of minimal residual disease. Br J Haematol 2021; 193:602-612. [PMID: 33715150 DOI: 10.1111/bjh.17382] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
CD19-directed treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) frequently leads to the downmodulation of targeted antigens. As multicolour flow cytometry (MFC) application for minimal/measurable residual disease (MRD) assessment in BCP-ALL is based on B-cell compartment study, CD19 loss could hamper MFC-MRD monitoring after blinatumomab or chimeric antigen receptor T-cell (CAR-T) therapy. The use of other antigens (CD22, CD10, CD79a, etc.) as B-lineage gating markers allows the identification of CD19-negative leukaemia, but it could also lead to misidentification of normal very-early CD19-negative BCPs as tumour blasts. In the current study, we summarized the results of the investigation of CD19-negative normal BCPs in 106 children with BCP-ALL who underwent CD19 targeting (blinatumomab, n = 64; CAR-T, n = 25; or both, n = 17). It was found that normal CD19-negative BCPs could be found in bone marrow after CD19-directed treatment more frequently than in healthy donors and children with BCP-ALL during chemotherapy or after stem cell transplantation. Analysis of the antigen expression profile revealed that normal CD19-negative BCPs could be mixed up with residual leukaemic blasts, even in bioinformatic analyses of MFC data. The results of our study should help to investigate MFC-MRD more accurately in patients who have undergone CD19-targeted therapy, even in cases with normal CD19-negative BCP expansion.
Collapse
Affiliation(s)
- Ekaterina Mikhailova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexandra Semchenkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Olga Illarionova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Svetlana Kashpor
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Varvara Brilliantova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Zakharova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Zerkalenkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Andrea Zangrando
- Maternal and Child Health Department, University of Padua, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | | | - Larisa Shelikhova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Diakonova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Vladimir Zhogov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Rimma Khismatullina
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Olga Molostova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Barbara Buldini
- Maternal and Child Health Department, University of Padua, Padua, Italy
| | - Elena Raykina
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Sergey Larin
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Olshanskaya
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Michael Maschan
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander M Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|