1
|
Albert E, Giménez E, Hernani R, Piñana JL, Solano C, Navarro D. Torque Teno Virus DNA Load in Blood as an Immune Status Biomarker in Adult Hematological Patients: The State of the Art and Future Prospects. Viruses 2024; 16:459. [PMID: 38543824 PMCID: PMC10974055 DOI: 10.3390/v16030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
A solid body of scientific evidence supports the assumption that Torque teno virus (TTV) DNA load in the blood compartment may behave as a biomarker of immunosuppression in solid organ transplant recipients; in this clinical setting, high or increasing TTV DNA levels precede the occurrence of infectious complications, whereas the opposite anticipates the development of acute rejection. The potential clinical value of the TTV DNA load in blood to infer the risk of opportunistic viral infection or immune-related (i.e., graft vs. host disease) clinical events in the hematological patient, if any, remains to be determined. In fact, contradictory data have been published on this matter in the allo-SCT setting. Studies addressing this topic, which we review and discuss herein, are highly heterogeneous as regards design, patient characteristics, time points selected for TTV DNA load monitoring, and PCR assays used for TTV DNA quantification. Moreover, clinical outcomes are often poorly defined. Prospective, ideally multicenter, and sufficiently powered studies with well-defined clinical outcomes are warranted to elucidate whether TTV DNA load monitoring in blood may be of any clinical value in the management of hematological patients.
Collapse
Affiliation(s)
- Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Rafael Hernani
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - José Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
- Department of Medicine, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Cebriá-Mendoza M, Beamud B, Andreu-Moreno I, Arbona C, Larrea L, Díaz W, Sanjuán R, Cuevas JM. Human Anelloviruses: Influence of Demographic Factors, Recombination, and Worldwide Diversity. Microbiol Spectr 2023; 11:e0492822. [PMID: 37199659 PMCID: PMC10269794 DOI: 10.1128/spectrum.04928-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Anelloviruses represent the major and most diverse component of the healthy human virome, referred to as the anellome. In this study, we determined the anellome of 50 blood donors, forming two sex- and age-matched groups. Anelloviruses were detected in 86% of the donors. The number of detected anelloviruses increased with age and was approximately twice as high in men as in women. A total of 349 complete or nearly complete genomes were classified as belonging to torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV) anellovirus genera (197, 88, and 64 sequences, respectively). Most donors had intergenus (69.8%) or intragenus (72.1%) coinfections. Despite the limited number of sequences, intradonor recombination analysis showed 6 intragenus recombination events in ORF1. As thousands of anellovirus sequences have been described recently, we finally analyzed the global diversity of human anelloviruses. Species richness and diversity were close to saturation in each anellovirus genus. Recombination was found to be the main factor promoting diversity, although its effect was significantly lower in TTV than in TTMV and TTMDV. Overall, our results suggest that differences in diversity between genera may be caused by variations in the relative contribution of recombination. IMPORTANCE Anelloviruses are the most common human infectious viruses and are considered essentially harmless. Compared to other human viruses, they are characterized by enormous diversity, and recombination is suggested to play an important role in their diversification and evolution. Here, by analyzing the composition of the plasma anellome of 50 blood donors, we find that recombination is also a determinant of viral evolution at the intradonor level. On a larger scale, analysis of anellovirus sequences currently available in databases shows that their diversity is close to saturation and differs among the three human anellovirus genera and that recombination is the main factor explaining this intergenus variability. Global characterization of anellovirus diversity could provide clues about possible associations between certain virus variants and pathologies, as well as facilitate the implementation of unbiased PCR-based detection protocols, which may be relevant for using anelloviruses as endogenous markers of immune status.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Beatriz Beamud
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- FISABIO-Salud Pública, Generalitat Valenciana, Valencia, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Luís Larrea
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Wladimiro Díaz
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| |
Collapse
|
3
|
Cordey S, Laubscher F, Hartley MA, Junier T, Keitel K, Docquier M, Guex N, Iseli C, Vieille G, Le Mercier P, Gleizes A, Samaka J, Mlaganile T, Kagoro F, Masimba J, Said Z, Temba H, Elbanna GH, Tapparel C, Zanella MC, Xenarios I, Fellay J, D’Acremont V, Kaiser L. Blood virosphere in febrile Tanzanian children. Emerg Microbes Infect 2021; 10:982-993. [PMID: 33929935 PMCID: PMC8171259 DOI: 10.1080/22221751.2021.1925161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.
Collapse
Affiliation(s)
- Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Laubscher
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary-Anne Hartley
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Thomas Junier
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristina Keitel
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
- Department of Paediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Gael Vieille
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Anne Gleizes
- SwissProt group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | - Frank Kagoro
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - John Masimba
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Zamzam Said
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Gasser H. Elbanna
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Celine Zanella
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, Geneva, Switzerland
- Agora Center, University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie D’Acremont
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Valença IN, Santos RBD, Peronni KC, Sauvage V, Vandenbogaert M, Caro V, Silva Junior WAD, Covas DT, Silva-Pinto AC, Laperche S, Kashima S, Slavov SN. Deep sequencing applied to the analysis of viromes in patients with beta-thalassemia. Rev Inst Med Trop Sao Paulo 2021; 63:e40. [PMID: 34037156 PMCID: PMC8149102 DOI: 10.1590/s1678-9946202163040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022] Open
Abstract
To date, blood banks apply routine diagnosis to a specific spectrum of
transfusion-transmitted viruses. Even though this measure is considered highly
efficient to control their transmission, the threat imposed by emerging viruses
is increasing globally, which can impact transfusion safety, especially in the
light of the accelerated viral discovery by novel sequencing technologies. One
of the most important groups of patients, who may indicate the presence of
emerging viruses in the field of blood transfusion, is the group of individuals
who receive multiple transfusions due to hereditary hemoglobinopathies. It is
possible that they harbor unknown or unsuspected parenterally-transmitted
viruses. In order to elucidate this, nucleic acids from 30 patients with
beta-thalassemia were analyzed by Illumina next-generation sequencing and
bioinformatics analysis. Three major viral families:
Anelloviridae, Flaviviridae and
Hepadnaviridae were identified. Among
them, anelloviruses were the most representative, being detected with high
number of reads in all tested samples. Human Pegivirus 1 (HPgV-1, or GBV-C),
Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) were also identified. HBV
and HCV detection was expected due to the high seroprevalence in patients with
beta thalassemia. Our results do not confirm the presence of emerging or
unsuspected viruses threatening the transfusion safety at present, but can be
used to actively search for viruses that threaten blood transfusion safety. We
believe that the application of viral metagenomics in multiple-transfused
patients is highly useful to monitor possible viral transfusion threats and for
the annotation of their virome composition.
Collapse
Affiliation(s)
- Ian Nunes Valença
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Programa de Mestrado em Oncologia Clínica, Células-Tronco e Terapia Celular, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Bezerra Dos Santos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Programa de Mestrado em Oncologia Clínica, Células-Tronco e Terapia Celular, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Kamila Chagas Peronni
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Virginie Sauvage
- Centre National de Référence Risques Infectieux Transfusionnels, Institut National de la Transfusion Département d'études des Agents Transmissibles par le Sang, Paris, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France
| | - Valérie Caro
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France
| | - Wilson Araújo da Silva Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, São Paulo, Brazil
| | - Ana Cristina Silva-Pinto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Syria Laperche
- Centre National de Référence Risques Infectieux Transfusionnels, Institut National de la Transfusion Département d'études des Agents Transmissibles par le Sang, Paris, France
| | - Simone Kashima
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Regnault B, Bigot T, Ma L, Pérot P, Temmam S, Eloit M. Deep Impact of Random Amplification and Library Construction Methods on Viral Metagenomics Results. Viruses 2021; 13:v13020253. [PMID: 33562285 PMCID: PMC7915491 DOI: 10.3390/v13020253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Clinical metagenomics is a broad-range agnostic detection method of pathogens, including novel microorganisms. A major limit is the low pathogen load compared to the high background of host nucleic acids. To overcome this issue, several solutions exist, such as applying a very high depth of sequencing, or performing a relative enrichment of viral genomes associated with capsids. At the end, the quantity of total nucleic acids is often below the concentrations recommended by the manufacturers of library kits, which necessitates to random amplify nucleic acids. Using a pool of 26 viruses representative of viral diversity, we observed a deep impact of the nature of sample (total nucleic acids versus RNA only), the reverse transcription, the random amplification and library construction method on virus recovery. We further optimized the two most promising methods and assessed their performance with fully characterized reference virus stocks. Good genome coverage and limit of detection lower than 100 or 1000 genome copies per mL of plasma, depending on the genome viral type, were obtained from a three million reads dataset. Our study reveals that optimized random amplification is a technique of choice when insufficient amounts of nucleic acid are available for direct libraries constructions.
Collapse
Affiliation(s)
- Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, 75015 Paris, France; (B.R.); (P.P.); (S.T.)
| | - Thomas Bigot
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, 75015 Paris, France;
| | - Laurence Ma
- Biomics Platform, C2RT, Institut Pasteur, 75015 Paris, France;
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, 75015 Paris, France; (B.R.); (P.P.); (S.T.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, 75015 Paris, France; (B.R.); (P.P.); (S.T.)
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, 75015 Paris, France; (B.R.); (P.P.); (S.T.)
- Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-1-44-38-92-16
| |
Collapse
|
6
|
Jansen SA, Nijhuis W, Leavis HL, Riezebos-Brilman A, Lindemans CA, Schuurman R. Broad Virus Detection and Variant Discovery in Fecal Samples of Hematopoietic Transplant Recipients Using Targeted Sequence Capture Metagenomics. Front Microbiol 2020; 11:560179. [PMID: 33281758 PMCID: PMC7705093 DOI: 10.3389/fmicb.2020.560179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pediatric allogeneic hematopoietic stem cell transplantation (HSCT) patients often suffer from gastro-intestinal (GI) disease caused by viruses, Graft-versus-Host Disease (GVHD) or a combination of the two. Currently, the GI eukaryotic virome of HSCT recipients remains relatively understudied, which complicates the understanding of its role in GVHD pathogenicity. As decisions regarding immunosuppressive therapy in the treatment of virus infection or GVHD, respectively, can be completely contradicting, it is crucial to better understand the prevalence and relevance of viruses in the GI tract in the HSCT setting. A real time PCR panel for a set of specific viruses widely used to diagnose the most common causes of GI viral gastroenteritis is possibly insufficient to grasp the full extent of viruses present. Therefore, we applied the targeted sequence capture method ViroCap to residual fecal samples of 11 pediatric allogeneic HSCT recipients with GI symptoms and a suspicion of GVHD, to enrich for nucleic acids of viruses that are known to infect vertebrate hosts. After enrichment, NGS was applied to broadly detect viral sequences. Using ViroCap, we were able to detect viruses such as norovirus and adenovirus (ADV), that had been previously detected using clinical diagnostic PCR on the same sample. In addition, multiple, some of which clinically relevant viruses were detected, including ADV, human rhinovirus (HRV) and BK polyomavirus (BKV). Interestingly, in samples in which specific PCR testing for regular viral GI pathogens did not result in a diagnosis, the ViroCap pipeline led to the detection of viral sequences of human herpesvirus (HHV)-7, BKV, HRV, KI polyomavirus and astrovirus. The latter was an only recently described variant and showed extensive sequence mismatches with the applied real time PCR primers and would therefore not have been detected if tested. Our results indicate that target enrichment of viral nucleic acids through ViroCap leads to sensitive and broad possibly clinically relevant virus detection, including the detection of newer variants in clinical HSCT recipient samples. As such, ViroCap could be a useful detection tool clinically, but also in studying the associations between viral presence and GVHD.
Collapse
Affiliation(s)
- Suze A Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wouter Nijhuis
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Caroline A Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Schuurman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
7
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
8
|
Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front Public Health 2020; 8:326. [PMID: 32793540 PMCID: PMC7393601 DOI: 10.3389/fpubh.2020.00326] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human microbiota plays an indispensable role in physiology, nutrition and most significantly, in imparting immunity. The role of microbiota has remained cryptic for years, until recently meticulous studies revealed the interaction and dynamics of these microbial communities. This diversified state is governed by hormonal, behavioral and physio-chemical changes in the genital tract. Many inclusive studies have revealed "Lactobacillus" to be the most dominant member of vaginal flora in most of the healthy, reproductive age group and pregnant females. A total of five community state types have been described, out of which four are dominated by Lactobacillus while the fifth one by facultative or strict anaerobic species. A variation between species stability and gestational age has also been revealed. Studies have divulged a significant higher stability of vaginal microbiota in early stages of pregnancy and the same increased subsequently. Inter-species and racial variation has shown women belonging to White, Asian, and Caucasian race to harbor more of the anaerobic flora. The vaginal microbiome in pregnancy play a significant role in preterm and spontaneous labor. This Lactobacillus-rich microbiome falls tremendously, becoming more diverse in post-partum period. Apart from these known bacterial communities in human vagina, other microbial communities have also been traced. The major fragment is constituted by vaginal viral virome and very little information exists in relation to vaginal mycobiome. Studies have revealed the abundance of ds DNA viruses in vaginal microbiome, followed by ssDNA, and few unidentified viruses. The eukaryotic viruses detected were very few, with Herpesvirales, and Papillomaviridae being the only pathogenic ones. This flora is transmitted to infants either via maternal gut, vagina or breast milk. Recent studies have given an insight for vaginal microbiome, dissociating the old concept of "healthy" and "diseased." However, more extensive studies are required to study evolution of virome and mycobiome in relation to their association with bacterial communities; to establish and decode full array of vaginal virome under the influence of genotypic and environmental factors, using novel bioinformatic, multi-omic, statistical model, and CRISPR/Cas approaches.
Collapse
|
9
|
Fahsbender E, Charlys da-Costa A, Elise Gill D, Augusto de Padua Milagres F, Brustulin R, Julio Costa Monteiro F, Octavio da Silva Rego M, Soares D’Athaide Ribeiro E, Cerdeira Sabino E, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS One 2020; 15:e0229993. [PMID: 32134963 PMCID: PMC7058308 DOI: 10.1371/journal.pone.0229993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Antonio Charlys da-Costa
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Danielle Elise Gill
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Flavio Augusto de Padua Milagres
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | | | | | | | - Ester Cerdeira Sabino
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ghose C, Ly M, Schwanemann LK, Shin JH, Atab K, Barr JJ, Little M, Schooley RT, Chopyk J, Pride DT. The Virome of Cerebrospinal Fluid: Viruses Where We Once Thought There Were None. Front Microbiol 2019; 10:2061. [PMID: 31555247 PMCID: PMC6742758 DOI: 10.3389/fmicb.2019.02061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023] Open
Abstract
Traditionally, medicine has held that some human body sites are sterile and that the introduction of microbes to these sites results in infections. This paradigm shifted significantly with the discovery of the human microbiome and acceptance of these commensal microbes living across the body. However, the central nervous system (CNS) is still believed by many to be sterile in healthy people. Using culture-independent methods, we examined the virome of cerebrospinal fluid (CSF) from a cohort of mostly healthy human subjects. We identified a community of DNA viruses, most of which were identified as bacteriophages. Compared to other human specimen types, CSF viromes were not ecologically distinct. There was a high alpha diversity cluster that included feces, saliva, and urine, and a low alpha diversity cluster that included CSF, body fluids, plasma, and breast milk. The high diversity cluster included specimens known to have many bacteria, while other specimens traditionally assumed to be sterile formed the low diversity cluster. There was an abundance of viruses shared among CSF, breast milk, plasma, and body fluids, while each generally shared less with urine, feces, and saliva. These shared viruses ranged across different virus families, indicating that similarities between these viromes represent more than just a single shared virus family. By identifying a virome in the CSF of mostly healthy individuals, it is now less likely that any human body site is devoid of microbes, which further highlights the need to decipher the role that viral communities may play in human health.
Collapse
Affiliation(s)
| | - Melissa Ly
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Leila K Schwanemann
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ji Hyun Shin
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Katayoon Atab
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jessica Chopyk
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Pathology, University of California, San Diego, San Diego, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Li G, Zhou Z, Yao L, Xu Y, Wang L, Fan X. Full annotation of serum virome in Chinese blood donors with elevated alanine aminotransferase levels. Transfusion 2019; 59:3177-3185. [PMID: 31393615 DOI: 10.1111/trf.15476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND A serum alanine aminotransferase (ALT) test is currently demanded for blood donation in China. One of the major reasons to include such a test is possible etiology of known or unknown hepatotropic viruses. However, this hypothesis has never been examined convincingly. STUDY DESIGN AND METHODS The study recruited 90 Chinese blood donors that were divided into three groups based on their ALT values. Serum virome from these donors was explored using a metagenomics approach with enhanced sensitivity resolved at single sequencing reads. RESULTS Anellovirus and pegivirus C (GBV-C) were detected among these donors. None of them were found solely in donors with abnormal liver enzyme. Anellovirus was highly prevalent (93.3%) and the co-infection with multiple genera (alpha, beta, and gammatorquevirus) were more common in the donors with normal ALT values in comparison to those with elevated ALT (single/double/triple Anellovirus genera, 1/3/24 vs. 7/7/14 or 6/7/13, p = 0.009). For unmapped reads that accounted for 15 ± 14.9% of the data, similarity-based (BLASTN, BLASTP, and HMMER3) and similarity-independent (k-mer frequency) analysis identified several circular rep encoding ssDNA (CRESS-DNA) genomes. Direct PCR testing indicated these genomes were likely reagent contaminants. CONCLUSION Viral etiology is not responsible for elevated ALT levels in Chinese blood donors. The ALT test, if not abandoned, should be adjusted for its cutoff in response to donor shortage in China.
Collapse
Affiliation(s)
- Gang Li
- Wuhan Blood Center, Wuhan, China
| | | | - Li Yao
- Wuhan Blood Center, Wuhan, China
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lan Wang
- Wuhan Blood Center, Wuhan, China
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Waldvogel-Abramowski S, Taleb S, Alessandrini M, Preynat-Seauve O. Viral Metagenomics of Blood Donors and Blood-Derived Products Using Next-Generation Sequencing. Transfus Med Hemother 2019; 46:87-93. [PMID: 31191194 DOI: 10.1159/000499088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transfusion-transmitted infections remain a permanent threat in medicine. It keeps the burden of the past, marked by serious infections transmitted by transfusion, and is constantly threatened by emerging viruses. The global rise of immunosuppression among patients undergoing frequent transfusions exacerbates this problem. Over the past decade, criteria for donor selection have become increasingly more stringent. Although routine nucleic acid testing (NAT) for virus-specific detection has become more sensitive, these safety measures are only valuable for a limited number of select viruses. The scientific approach to this is however changing, with the goal of trying to identify infectious agents in donor units as early as possible to mitigate the risk of a clinically relevant infection. To this end, and in addition to an epidemiological surveillance of the general population, researchers are adopting new methods to discover emerging infectious agents, while simultaneously screening for an extended number of viruses in donors. Next-generation sequencing (NGS) offers the opportunity to explore the entire viral landscape in blood donors, the so-called metagenomics, to investigate severe transfusion reactions of unknown etiology. In the not too distant future, one could imagine this platform being used for routine testing of donated blood products.
Collapse
Affiliation(s)
- Sophie Waldvogel-Abramowski
- Laboratory of Immunohematology, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Blood Transfusion Center, Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Sofiane Taleb
- Laboratory of Clinical Biology, Foch University Hospitals, Suresnes, France
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Medical Specialties of internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Factors affecting the quality, safety and marketing approval of clotting factor concentrates for haemophilia. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 16:525-534. [PMID: 30201084 DOI: 10.2450/2018.0150-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022]
Abstract
Selecting therapeutic products for the treatment of haemophilia follows the process of obtaining market approval of products submitted to the scrutiny of a regulatory agency. In well-resourced countries, key decisions on whether a product is sufficiently safe and of high quality are made by highly expert and well-resourced agencies, such as the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). In countries lacking such agencies, well-informed decisions can still be made through an appreciation of the key issues affecting the quality, safety and efficacy of haemophilia products. A number of well-established principles may then be applied in order to make a choice. In this review, reflecting principles outlined by the World Federation of Hemophilia, we outline the key features in determining the acceptability of therapeutic products for haemophilia in order to ensure an optimal choice in all the environments providing haemophilia care.
Collapse
|
14
|
Pannaraj PS, Ly M, Cerini C, Saavedra M, Aldrovandi GM, Saboory AA, Johnson KM, Pride DT. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front Microbiol 2018; 9:1162. [PMID: 29910789 PMCID: PMC5992295 DOI: 10.3389/fmicb.2018.01162] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Infants acquire many of their microbes from their mothers during the birth process. The acquisition of these microbes is believed to be critical in the development of the infant immune system. Bacteria also are transmitted to the infant through breastfeeding, and help to form the microbiome of the infant gastrointestinal (GI) tract; it is unknown whether viruses in human milk serve to establish an infant GI virome. We examined the virome contents of milk and infant stool in a cohort of mother-infant pairs to discern whether milk viruses colonize the infant GI tract. We observed greater viral alpha diversity in milk than in infant stool, similar to the trend we found for bacterial communities from both sites. When comparing beta diversity, viral communities were mostly distinguishable between milk and infant stool, but each was quite distinct from adult stool, urine, and salivary viromes. There were significant differences in viral families in the infant stool (abundant bacteriophages from the family Siphoviridae) compared to milk (abundant bacteriophages from the family Myoviridae), which may reflect significant differences in the bacterial families identified from both sites. Despite the differences in viral taxonomy, we identified a significant number of shared viruses in the milk and stool from all mother-infant pairs. Because of the significant proportion of bacteriophages transmitted in these mother-infant pairs, we believe the transmission of milk phages to the infant GI tract may help to shape the infant GI microbiome.
Collapse
Affiliation(s)
- Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Melissa Ly
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Chiara Cerini
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Monica Saavedra
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Grace M Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Abdul A Saboory
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Kevin M Johnson
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Pathology, University of California, San Diego, San Diego, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Chai JH, Lee CK, Lee HK, Wong N, Teo K, Tan CS, Thokala P, Tang JWT, Tambyah PA, Oh VMS, Loh TP, Yoong J. Cost-benefit analysis of introducing next-generation sequencing (metagenomic) pathogen testing in the setting of pyrexia of unknown origin. PLoS One 2018; 13:e0194648. [PMID: 29664913 PMCID: PMC5903630 DOI: 10.1371/journal.pone.0194648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/07/2018] [Indexed: 02/06/2023] Open
Abstract
Pyrexia of unknown origin (PUO) is defined as a temperature of >38.3°C that lasts for >3 weeks, where no cause can be found despite appropriate investigation. Existing protocols for the work-up of PUO can be extensive and costly, motivating the application of recent advances in molecular diagnostics to pathogen testing. There have been many reports describing various analytical methods and performance of metagenomic pathogen testing in clinical samples but the economics of it has been less well studied. This study pragmatically evaluates the feasibility of introducing metagenomic testing in this setting by assessing the relative cost of clinically-relevant strategies employing this investigative tool under various cost and performance scenarios using Singapore as a demonstration case, and assessing the price and performance benchmarks, which would need to be achieved for metagenomic testing to be potentially considered financially viable relative to the current diagnostic standard. This study has some important limitations: we examined only impact of introducing the metagenomic test to the overall diagnostic cost and excluded costs associated with hospitalization and makes assumptions about the performance of the routine diagnostic tests, limiting the cost of metagenomic test, and the lack of further work-up after positive pathogen detection by the metagenomic test. However, these assumptions were necessary to keep the model within reasonable limits. In spite of these, the simplified presentation lends itself to the illustration of the key insights of our paper. In general, we find the use of metagenomic testing as second-line investigation is effectively dominated, and that use of metagenomic testing at first-line would typically require higher rates of detection or lower cost than currently available in order to be justifiable purely as a cost-saving measure. We conclude that current conditions do not warrant a widespread rush to deploy metagenomic testing to resolve any and all uncertainty, but rather as a front-line technology that should be used in specific contexts, as a supplement to rather than a replacement for careful clinical judgement.
Collapse
Affiliation(s)
- Jia Hui Chai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Chun Kiat Lee
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Hong Kai Lee
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Nicholas Wong
- Department of Clinical Microbiology, University Hospital of Leicester NHS Trust, Leicester, United Kingdom
| | - Kahwee Teo
- Department of Paediatrics, University Hospital of Leicester NHS Trust, Leicester, United Kingdom
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Praveen Thokala
- Health Economics and Decision Science, School of Health and Related Research, The University of Sheffield, Sheffield, United Kingdom
| | - Julian Wei-Tze Tang
- Department of Clinical Microbiology, University Hospital of Leicester NHS Trust, Leicester, United Kingdom
- Department of Infection, Immunity, Inflammation, University of Leicester, Leicester, United Kingdom
| | | | - Vernon Min Sen Oh
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
- * E-mail:
| | - Joanne Yoong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Elimination of Viral Hepatitis and an Update on Blood Safety Technology. HEPATITIS MONTHLY 2018. [DOI: 10.5812/hepatmon.66577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
17
|
Carding SR, Davis N, Hoyles L. Review article: the human intestinal virome in health and disease. Aliment Pharmacol Ther 2017; 46:800-815. [PMID: 28869283 PMCID: PMC5656937 DOI: 10.1111/apt.14280] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human virome consists of animal-cell viruses causing transient infections, bacteriophage (phage) predators of bacteria and archaea, endogenous retroviruses and viruses causing persistent and latent infections. High-throughput, inexpensive, sensitive sequencing methods and metagenomics now make it possible to study the contribution dsDNA, ssDNA and RNA virus-like particles make to the human virome, and in particular the intestinal virome. AIM To review and evaluate the pioneering studies that have attempted to characterise the human virome and generated an increased interest in understanding how the intestinal virome might contribute to maintaining health, and the pathogenesis of chronic diseases. METHODS Relevant virome-related articles were selected for review following extensive language- and date-unrestricted, electronic searches of the literature. RESULTS The human intestinal virome is personalised and stable, and dominated by phages. It develops soon after birth in parallel with prokaryotic communities of the microbiota, becoming established during the first few years of life. By infecting specific populations of bacteria, phages can alter microbiota structure by killing host cells or altering their phenotype, enabling phages to contribute to maintaining intestinal homeostasis or microbial imbalance (dysbiosis), and the development of chronic infectious and autoimmune diseases including HIV infection and Crohn's disease, respectively. CONCLUSIONS Our understanding of the intestinal virome is fragmented and requires standardised methods for virus isolation and sequencing to provide a more complete picture of the virome, which is key to explaining the basis of virome-disease associations, and how enteric viruses can contribute to disease aetiologies and be rationalised as targets for interventions.
Collapse
Affiliation(s)
- S. R. Carding
- Norwich Medical SchoolUniversity of East AngliaNorwichUK,The Gut Health and Food Safety Research ProgrammeThe Quadram InstituteNorwich Research ParkNorwichUK
| | - N. Davis
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - L. Hoyles
- Department of Surgery and CancerImperial College LondonLondonUK
| |
Collapse
|
18
|
Wang X, Xu L, Chen Y, Liu A, Wang L, Xu P, Liu Y, Li L, Meng F. Integrating nested PCR with high-throughput sequencing to characterize mutations of HBV genome in low viral load samples. Medicine (Baltimore) 2017; 96:e7588. [PMID: 28746207 PMCID: PMC5627833 DOI: 10.1097/md.0000000000007588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Due to the low viral load of hepatitis B virus (HBV) in plasma samples, conventional techniques have limitations to the detection of antiviral resistance mutations. To solve the problem, we developed a fast, highly sensitive, and accurate method to sequence the HBV whole-genome sequencing in plasma samples which had various viral loads from very low to high.Twenty-one plasma samples were collected from patients who were carriers of HBV from the Hangzhou First People's Hospital. Two pairs of conserved, overlapping, nested primers were used to amplify and sequence the whole HBV genome in 8 plasma samples with different viral loads. High-throughput sequencing was performed on Illumina MiSeq platform. Concomitantly, 3 samples were directly sequenced without PCR amplification. We compared amplicon-sequencing with direct sequencing to develop a method for amplifying and characterizing the whole genome of HBV.HBV genome was amplified from all samples and verified by Sanger sequencing, regardless of the viral loads. Sequencing results revealed that only a few reads were mapped to the HBV genome following direct sequencing, while the amplicon-sequencing reads had a good coverage and depth. We identified 50 intrahost single nucleotide variations (iSNVs), 14 of which were low frequency mutations. Interestingly, iSNVs were more common in low viral load samples than in high viral load samples, and mutations in the reverse transcriptase (RT) region were most prevalent.We conclude that amplicon-sequencing is not only a practical method to detect HBV infection with a high sensitivity and accuracy but also enables to detect mutations in the HBV genome in low viral load samples from HBV-infected patients. Thus, our findings provide a new diagnosis method of HBV infection, which is capable of detection of low frequent mutations in low viral load samples.
Collapse
Affiliation(s)
- Xianjun Wang
- Clinical Laboratory, Hangzhou First People's Hospital
| | - Lihui Xu
- Clinical Laboratory, Hangzhou First People's Hospital
| | - Yueming Chen
- Clinical Laboratory, Hangzhou First People's Hospital
| | - Anbing Liu
- Clinical Laboratory, Hangzhou First People's Hospital
| | | | - Peisong Xu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Yunhui Liu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Lei Li
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, People's Republic of China
| | - Fei Meng
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Manso CF, Bibby DF, Mbisa JL. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Sci Rep 2017. [PMID: 28646219 PMCID: PMC5482852 DOI: 10.1038/s41598-017-02239-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses cause significant human pathology and are responsible for the majority of emerging zoonoses. Mainstream diagnostic assays are challenged by their intrinsic diversity, leading to false negatives and incomplete characterisation. New sequencing techniques are expanding our ability to agnostically interrogate nucleic acids within diverse sample types, but in the clinical setting are limited by overwhelming host material and ultra-low target frequency. Through selective host RNA depletion and compensatory protocol adjustments for ultra-low RNA inputs, we are able to detect three major blood-borne RNA viruses – HIV, HCV and HEV. We recovered complete genomes and up to 43% of the genome from samples with viral loads of 104 and 103 IU/ml respectively. Additionally, we demonstrated the utility of this method in detecting and characterising members of diverse RNA virus families within a human plasma background, some present at very low levels. By applying this method to a patient sample series, we have simultaneously determined the full genome of both a novel subtype of HCV genotype 6, and a co-infecting human pegivirus. This method builds upon earlier RNA metagenomic techniques and can play an important role in the surveillance and diagnostics of blood-borne viruses.
Collapse
Affiliation(s)
- Carmen F Manso
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| | - David F Bibby
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom.
| | - Jean L Mbisa
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| |
Collapse
|