1
|
Sequeira C, Oliveira-Santos M, Borges Rosa J, Silva Marques J, Oliveira Santos E, Norte G, Gonçalves L. Three-dimensional simulation for interventional cardiology procedures: Face and content validity. Rev Port Cardiol 2024; 43:389-396. [PMID: 38401705 DOI: 10.1016/j.repc.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 02/26/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Three-dimensional (3D) model simulation provides the opportunity to manipulate real devices and learn intervention skills in a realistic, controlled, and safe environment. To ensure that simulators provide a realistic surrogate to real procedures they must undergo scientific validation. We aimed to evaluate the 3D-printed simulator SimulHeart® for face and content validity to demonstrate its value as a training tool in interventional cardiology (IC). METHODS Health professionals were recruited from sixteen Portuguese IC units. All participants received a 30-minute theoretical introduction, 10-minute demonstration of each task and then performed the intervention on a 3D-printed simulator (SimulHeart®). Finally, a post-training questionnaire focusing on the appearance of the simulation, simulation content, and satisfaction/self-efficacy was administered. RESULTS We included 56 participants: 16 "experts" (general and interventional cardiologists), 26 "novices" (cardiology residents), and 14 nurses and allied professionals. On a five-point Likert scale, the overall mean score of face validity was 4.38±0.35 and the overall mean score of content validity was 4.69±0.32. There was no statistically significant difference in the scores provided by "experts" and "novices". Participants reported a high level of satisfaction/self-efficacy with 60.7% considering it strongly improved their skills. The majority (82.1%) "agreed" or "strongly agreed" that after the simulation they felt confident to perform the procedure on a patient. CONCLUSION The 3D-printed simulator (SimulHeart®) showed excellent face and content validity. 3D simulation may play an important role in future IC training programs. Further research is required to correlate simulator performance with clinical performance in real patients.
Collapse
Affiliation(s)
| | - Manuel Oliveira-Santos
- Faculty of Medicine, University of Coimbra, Portugal; Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; 3D CardioSolutions, Coimbra, Portugal
| | - João Borges Rosa
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João Silva Marques
- 3D CardioSolutions, Coimbra, Portugal; Serviço de Cardiologia, CHULN Hospital de Santa Maria, Lisboa, Portugal; Structural and Coronary Heart Disease Unit, Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Gustavo Norte
- Centro Hospitalar de Trás-Os-Montes e Alto Douro, Vila Real, Portugal
| | - Lino Gonçalves
- Faculty of Medicine, University of Coimbra, Portugal; Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Bharucha AH, Moore J, Carnahan P, MacCarthy P, Monaghan MJ, Baghai M, Deshpande R, Byrne J, Dworakowski R, Eskandari M. Three-dimensional printing in modelling mitral valve interventions. Echo Res Pract 2023; 10:12. [PMID: 37528494 PMCID: PMC10394816 DOI: 10.1186/s44156-023-00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Mitral interventions remain technically challenging owing to the anatomical complexity and heterogeneity of mitral pathologies. As such, multi-disciplinary pre-procedural planning assisted by advanced cardiac imaging is pivotal to successful outcomes. Modern imaging techniques offer accurate 3D renderings of cardiac anatomy; however, users are required to derive a spatial understanding of complex mitral pathologies from a 2D projection thus generating an 'imaging gap' which limits procedural planning. Physical mitral modelling using 3D printing has the potential to bridge this gap and is increasingly being employed in conjunction with other transformative technologies to assess feasibility of intervention, direct prosthesis choice and avoid complications. Such platforms have also shown value in training and patient education. Despite important limitations, the pace of innovation and synergistic integration with other technologies is likely to ensure that 3D printing assumes a central role in the journey towards delivering personalised care for patients undergoing mitral valve interventions.
Collapse
Affiliation(s)
- Apurva H Bharucha
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - John Moore
- Robarts Research Institute, Western University, London, ON, Canada
| | - Patrick Carnahan
- Robarts Research Institute, Western University, London, ON, Canada
| | - Philip MacCarthy
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mark J Monaghan
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Max Baghai
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Ranjit Deshpande
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Jonathan Byrne
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Rafal Dworakowski
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK
| | - Mehdi Eskandari
- The Cardiac Care Group, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
3
|
Borracci RA, Ferreira LM, Alvarez Gallesio JM, Tenorio Núñez OM, David M, Eyheremendy EP. Three-dimensional virtual and printed models for planning adult cardiovascular surgery. Acta Cardiol 2021; 76:534-543. [PMID: 33283655 DOI: 10.1080/00015385.2020.1852754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The objective of this study was to explore the usefulness of virtual models and three-dimensional (3D) printing technologies for planning complex non-congenital cardiovascular surgery. METHODS Between July 2018 and December 2019, adult patients with different cardiovascular structural diseases were included in a clinical protocol to explore the usefulness of Standard Tessellation Language (STL)-based virtual models and 3D printing for prospectively planning surgery. A qualitative descriptive analysis from the surgeon's viewpoint was done based on the characteristics, advantages and usefulness of 3D models for guiding, planning and simulating the surgical procedures. RESULTS A total of 14 custom 3D-printed heart and great vessel replicas with their corresponding 3D virtual models were created for preoperative surgical planning. Six of 14 models helped to redefine the surgical approach, 3 were useful to verify device delivery, while the rest did not change the surgical decision. In all open surgery cases, cardiac and vascular anatomy accuracy of virtual and physical 3D replicas was validated by direct visualisation of the organs during surgery. Printing was achieved through an external provider associated with the Hospital, who printed the final prototype in 5-7 days. Printed production cost was between 100 and 500 USD per model. CONCLUSIONS In the current study, the selected 3D printed models presented different advantages (visual, tactile, and instrumental) over the traditional flat anatomical images when simulating and planning some complex types of surgery. Notwithstanding 3D printing advantages, STL-based virtual models were pre-printing useful tools when instrumentation on a physical replica was not required.
Collapse
Affiliation(s)
- Raul A. Borracci
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | - Luis M. Ferreira
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | | | | - Michel David
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | |
Collapse
|
4
|
Russo M, Koenigshofer M, Stoiber M, Werner P, Gross C, Kocher A, Laufer G, Moscato F, Andreas M. Advanced three-dimensionally engineered simulation model for aortic valve and proximal aorta procedures. Interact Cardiovasc Thorac Surg 2020; 30:887-895. [PMID: 32285105 DOI: 10.1093/icvts/ivaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES A 3-dimensionally (3D) engineered model for simulation of aortic valve and proximal aortic procedures is a reliable tool both for training young surgeons and for simulating complex cases. To achieve a realistic simulation, the artificial model should reproduce the angles and orientations of the cardiac structures based on the patient's anatomical condition, reproduce tissue mechanical characteristics and be easy to obtain and easy to use. The goal of the study was the production and validation of realistic training models, based on the patient's actual anatomical characteristics, to provide training for aortic valve procedures. METHODS An anatomical model was manufactured using 3D printing and silicone casting. The digital anatomical model was obtained by segmenting computed tomography imaging. The segmented geometrical images were processed and a casting mould was designed. The mould was manufactured on a 3D printer. Silicone was cast into the mould; after curing, the finished model was ready. The realistic reproduction was evaluated by mechanical hardness tests and a survey by cardiac surgeons. RESULTS Six 3D silicone models were produced that represented the patient's anatomy including aortic valve leaflets, aortic root with coronary ostia, ascending aorta and proximal arch. Aortic valve replacement was performed, and 100% of the participants evaluated the model in a survey as perfectly reproducing anatomy and surgical handling. CONCLUSIONS We produced a realistic, cost-effective simulator for training purposes and for simulation of complex surgical cases. The model reproduced the real angulation and orientation of the aortic structures inside the mediastinum, permitting a real-life simulation of the desired procedure. This model offers opportunities to simulate various surgical procedures.
Collapse
Affiliation(s)
- Marco Russo
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Koenigshofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Stoiber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Paul Werner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Gross
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Alfred Kocher
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ali A, Ballard DH, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki FJ, Sheikh A. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions. 3D Print Med 2020; 6:24. [PMID: 32965536 PMCID: PMC7510265 DOI: 10.1186/s41205-020-00078-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted by the authors and graded according to published guidelines. RESULTS Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care; cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease, complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac trauma. CONCLUSIONS Adoption of common clinical standards regarding appropriate use, information and material management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will provide a reference for clinical standards of 3D printing for adult cardiac indications.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Waleed Althobaity
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michelle Ho
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Jane Matsumoto
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Justin Ryan
- Rady Children's Hospital, San Diego, CA, USA
| | - Rami Shorti
- Intermountain Healthcare, South Jordan, UT, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
6
|
Ferrari E, Gallo M, Wang C, Zhang L, Taramasso M, Maisano F, Pirelli L, Berdajs D, von Segesser LK. Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation. Interact Cardiovasc Thorac Surg 2020; 30:203-214. [PMID: 31633170 DOI: 10.1093/icvts/ivz250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.
Collapse
Affiliation(s)
- Enrico Ferrari
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | - Michele Gallo
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | | | - Lei Zhang
- Cardiovascular Surgery, Nanjing Jinling Hospital, Nanjing, China
| | | | - Francesco Maisano
- Cardiovascular Surgery, Zurich University Hospital, Zurich, Switzerland
| | - Luigi Pirelli
- Cardiothoracic Surgery, Lenox Hill Heart and Vascular Institute, New York, NY, USA
| | - Denis Berdajs
- Cardiovascular Surgery, Basel University Hospital, Basel, Switzerland
| | - Ludwig Karl von Segesser
- Department of Surgery, Cardiovascular Research Unit, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
7
|
Totaro P, Marconi S, Morganti S, Corsico AG, Pelenghi S, Auricchio F. Multidisciplinary preoperative simulations to optimize surgical outcomes in a challenging case of the complete double aortic arch in the adult. J Card Surg 2020; 35:716-720. [PMID: 32027400 DOI: 10.1111/jocs.14448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Challenging surgical cases are becoming more and more frequent, making the optimization of decision making process and an accurate preoperative planning mandatory in order to improve postoperative outcomes. AIMS Here we present an original multidisciplinary approach aimed at optimizing decision making in a peculiar case of double aortic arch (DAA) presenting in an adult patient. MATERIALS AND METHODS Following the diagnosis of DAA, based on conventional exams, a three steps engineering simulation was adopted including: a) three-dimensional (3D) rapid prototype simulation; b) computational fluid-dynamic analysis; c) 3D virtual simulation of surgical exposure. RESULTS Based on careful evaluation of such simulations we were able to identify optimal anatomical and functional surgical options, along with the optimal surgical approach. DISCUSSION In peculiar clinical case, a significant step forward to optimize preoperative surgical planning could be obtained applying current available engineering techniques. CONCLUSION We do believe that a multidisciplinary approach could become mandatory, in challenging cases, to optimize preoperative planning and outcomes.
Collapse
Affiliation(s)
- Pasquale Totaro
- Division of Cardiac Surgery, IRCCS Foundation Hospital San Matteo, Pavia, Italy
| | - Stefania Marconi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Simone Morganti
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Angelo Guido Corsico
- Division of Respiratory Diseases, IRCCS Foundation Hospital San Matteo, University of Pavia, Pavia, Italy
| | - Stefano Pelenghi
- Division of Cardiac Surgery, IRCCS Foundation Hospital San Matteo, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Cardiovascular interventions planning through a three-dimensional printing patient-specific approach: Erratum. J Cardiovasc Med (Hagerstown) 2019; 20:730. [PMID: 31469716 DOI: 10.2459/jcm.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|