The RGS2 (-391, C>G) genetic variation correlates to antihypertensive drug responses in Chinese patients with essential hypertension.
PLoS One 2015;
10:e0121483. [PMID:
25849301 PMCID:
PMC4388730 DOI:
10.1371/journal.pone.0121483]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/01/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE
Regulators of G-protein signaling protein 2 (RGS2) play an irreplaceable role in the control of normal blood pressure (BP). One RGS2 (-391, C>G) genetic variation markedly changes its mRNA expression levels. This study explored the relationship between this genetic variation and the responses to antihypertensive drugs in Chinese patients with essential hypertension.
METHODS
Genetic variations of RGS2 were successfully identified in 367 specimens using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays. All patients were treated with conventional doses of antihypertensives after a 2-week run-in period and followed-up according to our protocol. A general linear model multivariate analysis of variance (ANOVA) was used for the data analysis.
RESULTS
A significant difference in the mean systolic BP change was observed between RGS2 (-391, C>G) CC/CG (n = 82) and GG (n = 38) genotype carriers (-13.6 vs. -19.9 mmHg, P = 0.043) who were treated with candesartan, irbesartan or imidapril at the end of 6 weeks. In addition, the patients' BP responses to α,β-adrenergic receptor blockers exhibited an age-specific association with the RGS2 (-391, C>G) genetic variation at the end of 4 weeks.
CONCLUSION
The RGS2 (-391, C>G) genetic polymorphism may serve as a biomarker to predict a patient's response to antihypertensive drug therapy, but future studies need to confirm this.
Collapse