1
|
Ladera Gómez ME, Nieto Farias MV, Rodríguez M, Váter A, Ceriani MC, Dolcini GL. Altered apoptosis and proliferation in milk cells and PBMc from BLV-infected bovines with different proviral loads: Possible role of the BCL-2 family proteins, TNF-alpha, and receptors. Vet Immunol Immunopathol 2024; 268:110703. [PMID: 38154260 DOI: 10.1016/j.vetimm.2023.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 12/09/2023] [Indexed: 12/30/2023]
Abstract
Bovines infected by bovine leukemia virus (BLV) are characterized by presenting low proviral load (LPL) or high proviral load (HPL). It is reported that animals with HPL in peripheral blood mononuclear cells (PBMCs) present a decrease in apoptosis, an increase in viability and the proliferation rate, while animals that maintain an LPL have an intrinsic ability to control the infection, presenting an increased apoptosis rate of their PBMCs. However, there is little information on the effect of BLV on these mechanisms when the virus infects somatic milk cells (SC). This study investigates the mechanisms underlying apoptosis in milk and blood from BLV-infected animals with HPL and LPL. Relative levels of mRNA of tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNF-RI), TNF receptor 2 (TNF-RII), anti-apoptotic B-cell lymphoma 2 protein (Bcl-2), and pro-apoptotic Bcl-2-like protein 4 (Bax) were measured in SC and PBMCs using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. A significant decrease in the expression of TNF-α in SC from HPL animals vs non-infected bovines was observed, but the infection in SC with BLV did not show a modulation on the expression of TNF receptors. A significant increase in TNF-RI expression in PBMCs from HPL bovines compared to LPL bovines was observed. No significant differences in PBMCs between HPL and LPL compared to non-infected animals concerning TNF-α, TNF-RI, and TNF-RII expression were found. There was a significant increase of both Bcl-2 and Bax in SC from LPL compared to non-infected bovines, but the Bcl-2/Bax ratio showed an anti-apoptotic profile in LPL and HPL bovines compared to non-infected ones. Reduced mRNA expression levels of Bax were determined in the PBMCs from HPL compared to LPL subjects. In contrast, BLV-infected bovines did not differ significantly in the mRNA expression of Bax compared to non-infected bovines. Our data suggest that the increased mRNA expression of Bax corresponds to the late lactation state of bovine evaluated and the exacerbated increase of mRNA expression of Bcl-2 may be one of the mechanisms for the negative apoptosis regulation in the mammary gland induced by BLV infection. These results provide new insights into the mechanism of mammary cell death in HPL and LPL BLV-infected bovine mammary gland cells during lactation.
Collapse
Affiliation(s)
- M E Ladera Gómez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - M V Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - M Rodríguez
- Área de Bioestadística, Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - A Váter
- Escuela de Educación Secundaria Agraria Nº1 "Dr. Ramón Santamarina", Tandil, Argentina
| | - M C Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina
| | - G L Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET/UNCPBA/CICPBA), Facultad de Ciencias Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000 Tandil, Argentina.
| |
Collapse
|
2
|
Nobrega DB, French JE, Kelton DF. A scoping review of the testing of bulk tank milk to detect nonbacterial pathogens or herd exposure to nonbacterial pathogens in dairy cattle. J Dairy Sci 2023; 106:5636-5658. [PMID: 37291033 DOI: 10.3168/jds.2022-22586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/06/2023] [Indexed: 06/10/2023]
Abstract
In this scoping review, we characterized the literature reporting on the testing of bulk milk samples to detect microorganisms other than bacteria that can cause diseases in dairy cattle, including viruses, helminths, algae, and protozoa. A search strategy was completed by screening databases, conference proceedings, animal health agency websites, disease surveillance program websites, and handbooks of cattle-related diagnostic tests for potentially relevant articles. Two reviewers independently screened articles in English, Portuguese, or Spanish; original studies reporting on the testing of farm-level, unprocessed bulk milk samples for presence of pathogens or specific antibodies against agents other than bacteria that can cause diseases in cows were retained. From all studies, we used spreadsheets to extract relevant information, including pathogen screened, test used, and country of origin of bulk milk samples. Additionally, for studies reporting sufficient data to estimate test characteristics, we extracted detailed information about herd eligibility, testing protocol, and herd-level infection definition. A total of 8,829 records were identified, from which 1,592 were retained and assessed for eligibility, and 306 were included. Bovine viral diarrhea virus, Fasciola hepatica, Ostertagia ostertagi, and bovine herpesvirus 1 were the most frequently screened agents, reported from 107, 45, 45, and 33 studies, respectively. Sensitivity of bulk milk ELISA to detect herds with animals infected by bovine herpesvirus 1 ranged from 2 to 100%, and was affected mostly by antigen selection, cut-off adopted, herd vaccination status, and seroprevalence of lactating cows. Bulk milk ELISA had very high specificity to detect herds free of bovine leukemia virus, and varying sensitivity to detect herds with infected animals, which depended on the within-herd seroprevalence of lactating cattle. As for bovine viral diarrhea virus, in general, the sensitivity of bulk milk ELISA was moderate to high (>80%) when infection status was defined based on presence of persistently infected cattle or a high proportion of seropositive lactating cattle. Nevertheless, bulk milk ELISA was not able to distinguish infected and noninfected herds based on presence of seropositive unvaccinated weanlings. The PCR or quantitative PCR protocols employed had very low sensitivities (<40%) and very high specificities (>95%) to classify bovine viral diarrhea virus infection status of dairy herds. Sensitivity and specificity of bulk milk ELISA to classify herds with regards to presence of F. hepatica- or O. ostertagi-parasitized cattle were generally high and driven mostly by the definition of herd infection status. Conversely, bulk milk ELISA demonstrated varying characteristics to detect herds with or without Dictyocaulus viviparus-parasitized cattle, depending primarily on the antigen selected and presence of cattle with clinical signs of lungworm infection.
Collapse
Affiliation(s)
- Diego B Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Julie E French
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
3
|
Lendez PA, Martínez Cuesta L, Nieto Farías MV, Vater AA, Ghezzi MD, Mota-Rojas D, Dolcini GL, Ceriani MC. Effect of heat stress on TNF-α, TNFRI and TNFRII expression in BLV infected dairy cattle. J Therm Biol 2023; 114:103568. [PMID: 37162166 DOI: 10.1016/j.jtherbio.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.
Collapse
Affiliation(s)
- Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Lucía Martínez Cuesta
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Victoria Nieto Farías
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Adrián Alejandro Vater
- Escuela de Educación Secundaria Agraria N°1 "DR, RAMON SANTAMARINA", Pje La Porteña, Ruta Pcial N, 30 KM 122.5, Tandil, Argentina
| | - Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - Daniel Mota-Rojas
- Stress Physiology and Farm Animal Welfare, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana (UAM), Ciudad de México, Mexico
| | - Guillermina Laura Dolcini
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional Del Centro De la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil, 7000, Argentina.
| |
Collapse
|
4
|
Lendez PA, Martinez-Cuesta L, Nieto Farias MV, Dolcini GL, Ceriani MC. Cytokine TNF-α and its receptors TNFRI and TNFRII play a key role in the in vitro proliferative response of BLV infected animals. Vet Res Commun 2021; 45:431-439. [PMID: 34453235 DOI: 10.1007/s11259-021-09825-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) main host cells are B lymphocytes. Infected animals can be classified into high or low proviral load (HPL or LPL respectively), regarding the number of proviral copies infected lymphocytes they carry. After infection, there is an overexpression of several cytokines, particularly TNF-α, which has a delicate regulation mediated by receptors TNFRI and TNFRII; the first one involved with apoptosis, while the other stimulates cell proliferation. The study aimed to quantify TNF-α and its receptors mRNA expression, and in which extent in vitro proliferation was affected, in peripheral blood mononuclear cells (PBMC) from BLV-infected animals with different proviral loads, after the addition or not of synthetic TNF-α (rTNF-α) for 48 h. PBMC from BLV-infected animals showed spontaneous proliferation after 48 h in culture but did not show changes in proliferation rates after 48 h incubation in the presence of the rTNF-α. TNF-α mRNA expression after 48 h culture without exogenous stimulation was significantly lower, regardless of the proviral load of the donor, compared to non-infected animals. In the LPL animals, the expression of TNF-α mRNA was significantly lower with respect to the control group while the expression of TNFRI mRNA was significantly increased. The HPL animals showed a significant decrease in the expression of TNF-α and TNFRII mRNA respect to the control group. After 48 h incubation with rTNF-α, PBMC from infected animals had different responses: TNF-α and TNFRI mRNA expression was reduced in PBMC from the LPL group compared to the BLV negative group, but no differences were observed in PBMC from the HPL group. TNFRII mRNA expression showed no differences between HPL, LPL, and BLV negative groups, though HPL animals expressed 10.35 times more TNFRI mRNA than LPL. These results support the hypothesis that LPL animals, when faced with viral reactivation, present a pro-apoptotic and anti-proliferative state. However, complementary studies are needed to explain the influence of TNFRII on the development of the HLP profile. On the other hand, exogenous stimulation studies reinforce the hypothesis that BLV infection compromises the immune response of the animals.
Collapse
Affiliation(s)
- Pamela Anahí Lendez
- Virology Area, FCV-UNCPBA, Tandil; Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, 7000, Tandil, Argentina
| | - Lucía Martinez-Cuesta
- Virology Area, FCV-UNCPBA, Tandil; Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, 7000, Tandil, Argentina
| | - María Victoria Nieto Farias
- Virology Area, FCV-UNCPBA, Tandil; Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, 7000, Tandil, Argentina
| | - Guillermina Laura Dolcini
- Virology Area, FCV-UNCPBA, Tandil; Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, 7000, Tandil, Argentina
| | - María Carolina Ceriani
- Virology Area, FCV-UNCPBA, Tandil; Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, 7000, Tandil, Argentina.
| |
Collapse
|
5
|
Forletti A, Lützelschwab CM, Cepeda R, Esteban EN, Gutiérrez SE. Early events following bovine leukaemia virus infection in calves with different alleles of the major histocompatibility complex DRB3 gene. Vet Res 2020; 51:4. [PMID: 31931875 PMCID: PMC6958566 DOI: 10.1186/s13567-019-0732-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Cattle maintaining a low proviral load (LPL) status after bovine leukaemia virus (BLV) infection have been recognized as BLV controllers and non-transmitters to uninfected cattle in experimental and natural conditions. LPL has been associated with host genetics, mainly with the BoLA class II DRB3 gene. The aim of this work was to study the kinetics of BLV and the host response in Holstein calves carrying different BoLA-DRB3 alleles. Twenty BLV-free calves were inoculated with infected lymphocytes. Two calves were maintained uninfected as controls. Proviral load, total leukocyte and lymphocyte counts, anti-BLVgp51 titres and BLVp24 expression levels were determined in blood samples at various times post-inoculation. The viral load peaked at 30 days post-inoculation (dpi) in all animals. The viral load decreased steadily from seroconversion (38 dpi) to the end of the study (178 dpi) in calves carrying a resistance-associated allele (*0902), while it was maintained at elevated levels in calves with *1501 or neutral alleles after seroconversion. Leukocyte and lymphocyte counts and BLVp24 expression did not significantly differ between genetic groups. Animals with < 20 proviral copies/30 ng of DNA at 178 dpi or < 200 proviral copies at 88 dpi were classified as LPL, while calves with levels above these limits were considered to have high proviral load (HPL) profiles. All six calves with the *1501 allele progressed to HPL, while LPL was attained by 6/7 (86%) and 2/6 (33%) of the calves with the *0902 and neutral alleles, respectively. One calf with both *0902 and *1501 developed LPL. This is the first report of experimental induction of the LPL profile in cattle.
Collapse
Affiliation(s)
- Agustina Forletti
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia María Lützelschwab
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Rosana Cepeda
- Area de Bioestadística, Facultad de Ciencias Veterinarias, Instituto Multidisciplinario de Ecosistemas y Desarrollo Sustentable, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Eduardo N Esteban
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina
| | - Silvina Elena Gutiérrez
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, 7000, Tandil, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Nieto Farias MV, Souza FN, Lendez PA, Martínez-Cuesta L, Santos KR, Della Libera AMMP, Ceriani MC, Dolcini GL. Lymphocyte proliferation and apoptosis of lymphocyte subpopulations in bovine leukemia virus-infected dairy cows with high and low proviral load. Vet Immunol Immunopathol 2018; 206:41-48. [PMID: 30502911 DOI: 10.1016/j.vetimm.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.
Collapse
Affiliation(s)
- María Victoria Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Fernando Nogueira Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Pamela Anahí Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Lucía Martínez-Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Kamila Reis Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Alice Maria Melville Paiva Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - María Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Guillermina Laura Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina.
| |
Collapse
|
7
|
Lützelschwab CM, Forletti A, Cepeda R, Esteban EN, Confalonieri O, Gutiérrez SE. Co-infection with Mycobacterium bovis does not alter the response to bovine leukemia virus in BoLA DRB3*0902, genetically resistant cattle. Res Vet Sci 2016; 109:10-16. [PMID: 27892856 DOI: 10.1016/j.rvsc.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022]
Abstract
High proviral load (HPL) profile in bovine leukemia virus infected animals poses increased risk of transmission, and development of HPL or low proviral load (LPL) profile may be attributed to host genetics. Genetic resistance and susceptibility has been mapped to the Major Histocompatibility Complex class II DRB3 gene (BoLA DRB3). The aim of this work was to determine the effect of Mycobacterium bovis infection on certain virological and host immunological parameters of BLV experimental infection. Twenty-six Argentinian Holstein calves carrying the resistance-associated marker allele BoLA DRB3*0902, susceptibility-associated marker allele BoLA DRB3*1501, or neutral BoLA DRB3 alleles, exposed to M. bovis were used. Twenty calves were inoculated with BLV, three were naturally infected and other three were BLV-negative. Seven from twenty six (27%) of the animals resulted positive to the PPD test. The proviral load, absolute leukocyte and lymphocyte counts, time to seroconversion, antibody titer against BLV, and viral antigen expression in vitro at various times post inoculation were determined and compared between PPD+ and PPD- animals. From a total of 23 BLV positive animals (naturally and experimentally infected), 13 (56.5%) developed HPL, and 10 (43.5%) developed LPL. None of the investigated parameters were affected by infection with M. bovis. We concluded that the ability of cattle carrying resistance-associated marker to control BLV and to progress towards a LPL phenotype was not altered by M. bovis co-infection.
Collapse
Affiliation(s)
- Claudia M Lützelschwab
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Agustina Forletti
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Rosana Cepeda
- Area de Bioestadística, Facultad de Ciencias Veterinarias, Instituto Multidisciplinario de Ecosistemas y Desarrollo Sustentable, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Eduardo N Esteban
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Omar Confalonieri
- Departamento de Clínica, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| | - Silvina E Gutiérrez
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A.), Pinto 399, Tandil 7000, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Farias MVN, Lendez PA, Marin M, Quintana S, Martínez-Cuesta L, Ceriani MC, Dolcini GL. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Res Vet Sci 2016; 107:190-195. [DOI: 10.1016/j.rvsc.2016.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/09/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
9
|
Khudhair YI, Hasso SA, Yaseen NY, Al-Shammari AM. Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microbes Infect 2016; 5:e56. [PMID: 27273225 PMCID: PMC4932651 DOI: 10.1038/emi.2016.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 03/07/2016] [Indexed: 02/04/2023]
Abstract
Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed) using enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). On the basis of the absolute number of lymphocytes, five of the 31 positive PCR cases had PL. Among these leukemic cattle, one case exhibited overt neutrophilia. Serum samples were used to detect BLV antibodies, which were observed in 28 (7%) samples. PCR detected BLV provirus in 31 samples (7.75%). All 28 of the seropositive samples and the 3 seronegative samples were positive using PCR. Associations were observed between bovine leukosis and cattle breed, age and sex. Age-specific analysis showed that the BLV percentage increased with age in both breeds. Female cattle (29 animals; 7.34%) exhibited significantly higher infectivity than male cattle (two animals; 4.34%). In conclusion, comprehensive screening for all affected animals is needed in Iraq; programs that segregate cattle can be an effective and important method to control and/or eliminate the BLV.
Collapse
Affiliation(s)
- Yahia Ismail Khudhair
- Department of Veterinary Medicine, College of Veterinary Medicine, Al-University of Qadisiyah, Al Diwaniyah 58002, Iraq
| | - Saleem Amin Hasso
- Department of Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad 10001, Iraq
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| |
Collapse
|
10
|
Juliarena MA, Barrios CN, Ceriani M, Esteban EN. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J Dairy Sci 2016; 99:4586-4589. [DOI: 10.3168/jds.2015-10480] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
|
11
|
Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch Virol 2015; 160:2001-7. [PMID: 26051703 DOI: 10.1007/s00705-015-2448-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine involved in the immune response against viral and other infections. Its expression levels are affected by a polymorphism in the promoter region of the gene. Bovine leukemia virus is a retrovirus that infects cattle and develops two different infection profiles in the host. One profile is characterized by a high number of proviral copies integrated into the host genome and a strong immune response against the virus, while the most relevant property of the other profile is that the number of copies integrated into the host genome is almost undetectable and the immune response is very weak. We selected a population of cattle sufficiently large for statistical analysis and classified them according to whether they had a high or low proviral load (HPL or LPL). Polymorphisms in the promoter region were identified by PCR-RFLP. The results indicated that, in the HPL group, the three possible genotypes were normally distributed and that, in the LPL group, there was a significant association between the proviral load and a low frequency of the G/G genotype at position -824.
Collapse
|
12
|
Juliarena MA, Lendez PA, Gutierrez SE, Forletti A, Rensetti DE, Ceriani MC. Partial molecular characterization of different proviral strains of bovine leukemia virus. Arch Virol 2012; 158:63-70. [DOI: 10.1007/s00705-012-1459-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/10/2012] [Indexed: 10/27/2022]
|
13
|
Using a herd profile to determine age-specific prevalence of bovine leukemia virus in michigan dairy herds. Vet Med Int 2012; 2012:350374. [PMID: 22577607 PMCID: PMC3329709 DOI: 10.1155/2012/350374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
Enzootic bovine leukosis is a contagious disease of cattle caused by the retrovirus, bovine leukemia virus (BLV) and is the most common cause of malignant neoplasm in cattle. In order to facilitate surveillance of this disease in dairy herds, we developed a method to combine ELISA of milk collected during routine production testing with a prescribed sampling of cows that is independent of the proportion of cows within each lactation. In 113 Michigan dairy herds, milk samples from ten cows in each of the 1st, 2nd, 3rd, and ≥4th lactations were analyzed for anti-Bovine Leukemia Virus (BLV) antibodies by milk ELISA. For each herd, a BLV herd profile (BHP) was calculated as the simple average of the percent of BLV-positive cows within each of the four lactation groups. The mean BHP for all herds was 32.8%, with means of 18.5, 28.8, 39.2, and 44.8% of 1st, 2nd, 3rd, and ≥4th lactation animals infected, respectively. In eight herds, we determined the correlation between the BHP, and true herd prevalence by testing the entire lactating herd (r = 0.988, P < 0.0001). The BHP allows discrimination of lactation-specific BLV prevalence within a dairy herd, to help identify risk factors and management plans that may be important in transmission of BLV.
Collapse
|
14
|
Gutiérrez S, Ceriani C, Juliarena M, Ferrer JF. Host soluble factors that regulate the synthesis of the major core protein of the bovine leukemia virus (BLV) in a naturally infected neoplastic B-cell line. Vet Immunol Immunopathol 2009; 131:246-58. [DOI: 10.1016/j.vetimm.2009.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/27/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
|
15
|
Dube S, Abbott L, Dube DK, Dolcini G, Gutierrez S, Ceriani C, Juliarena M, Ferrer J, Perzova R, Poiesz BJ. The complete genomic sequence of an in vivo low replicating BLV strain. Virol J 2009; 6:120. [PMID: 19650931 PMCID: PMC3224937 DOI: 10.1186/1743-422x-6-120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/03/2009] [Indexed: 11/10/2022] Open
Abstract
DNA was extracted from lamb lymphocytes that were infected in vivo with a BLV strain after inoculation with the peripheral blood mononuclear cells from a persistently sero-indeterminate, low viral load, BLV-infected Holstein cow (No. 41) from Argentina. The DNA was PCR amplified with a series of overlapping primers encompassing the entire BLV proviral DNA. The amplified BLV ARG 41 DNA was cloned, sequenced, and compared phylogenetically to other BLV sequences including an in vivo high replicating strain (BLV ARG 38) from the same herd in Argentina. Characterization of BLV ARG 41's deduced proteins and its relationship to other members of the PTLV/BLV genus of retroviruses are discussed.
Collapse
Affiliation(s)
- Syamalima Dube
- Department of Medicine, Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Juliarena M, Poli M, Ceriani C, Sala L, Rodríguez E, Gutierrez S, Dolcini G, Odeon A, Esteban E. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J Dairy Sci 2009; 92:375-81. [DOI: 10.3168/jds.2008-1143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Juliarena MA, Poli M, Sala L, Ceriani C, Gutierrez S, Dolcini G, Rodrguez EM, Mario B, Rodrguez-Dubra C, Esteban EN. Association of BLV infection profiles with alleles of theBoLA-DRB3.2gene. Anim Genet 2008; 39:432-8. [DOI: 10.1111/j.1365-2052.2008.01750.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Juliarena MA, Gutierrez SE, Ceriani C. Determination of proviral load in bovine leukemia virus–infected cattle with and without lymphocytosis. Am J Vet Res 2007; 68:1220-5. [DOI: 10.2460/ajvr.68.11.1220] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Costa JMP, Sumita LM, Segurado AC. Non-radioisotope detection of pol sequences of HTLV-1 proviral DNA: Standardisation and sensitivity analysis. J Virol Methods 2006; 137:29-33. [PMID: 16822556 DOI: 10.1016/j.jviromet.2006.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 05/17/2006] [Accepted: 05/25/2006] [Indexed: 11/20/2022]
Abstract
Proviral DNA amplification methods may be used for identification of HTLV-1 infection or in basic virology research. Published standardised methods in this regard usually depend on hybridisation of PCR products with radioisotope-labelled probes. However, this procedure has limited use in routine testing, due to environmental and health risks. The aim was to assess the feasibility of routine use and the accuracy of an alternative detection system that employs an HTLV-1-specific enzyme-labelled probe. For this purpose DNA was extracted from MT-2 cells, quantified and submitted to serial dilution (1:10), starting from 1.2 microg of genomic DNA. Primary and nested PCR amplifications of pol sequences of the HTLV-1 genome were carried out with standardised primers (SK110/111 and POL1.1/3.1). After Southern blotting, two different detection systems were compared, consisting of hybridisation with either 32P- or alkaline phosphatase-labelled SK112 probes. Both detection systems yielded similar results, detecting PCR products generated from 120 pg of DNA (genomic DNA amount equivalent to 20 diploid human cells) after primary and nested PCR. The alkaline phosphatase-labelled detection technique was feasible for the diagnosis of HTLV-1 with the advantage of precluding the handling of radioisotopes.
Collapse
Affiliation(s)
- José Marcos Pereira Costa
- Virology Laboratory (LIM-52), Department of Infectious Diseases, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 470, 05403-000 São Paulo, SP, Brazil
| | | | | |
Collapse
|
20
|
Monti GE, Frankena K, De Jong MCM. Evaluation of natural transmission of bovine leukaemia virus within dairy herds of Argentina. Epidemiol Infect 2006; 135:228-37. [PMID: 16780609 PMCID: PMC2870559 DOI: 10.1017/s0950268806006637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2006] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to describe patterns of seroconversion to bovine leukaemia virus and to estimate the main parameters needed for future model building. A longitudinal study was carried out between February 1999 and November 2001 in seven commercial dairy farms in Argentina using 1535 lactating cows. Time-interval parameters were analysed using a parametric survival model with shared frailty, time until infection was analysed using a Bayesian interval-censoring survival model and the infection transmission parameter (beta) was estimated by a generalized linear model. The reproduction ratio (R0) was calculated. In total, 1000 cows tested positive and 494 tested negative. The predicted median age at infection was 4.6 years for seroconverted cows. For infected herds, the proportion of positive calves was as high as for infected cows and showed a large proportion of infected breeding heifers. Peaks in the overall average incidence per season-year were observed during autumn and spring. Results reveal that the period around parturition is a high-risk period. Moreover, heavily infected herds seem to have an increased proportion of young stock infected. The overall beta was estimated as 2.9/year (95% CI 1.9-3.7) and combined with a relatively long infectious period it resulted in a high reproductive ratio (R0=8.9). Therefore, a high effectiveness of control measures needs to be achieved to eradicate the disease.
Collapse
Affiliation(s)
- G E Monti
- Quantitative Veterinary Epidemiology Group, Wageningen Institute of Animal Sciences, Wageningen, The Netherlands.
| | | | | |
Collapse
|
21
|
Monti GE, Frankena K, Engel B, Buist W, Tarabla HD, de Jong MCM. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle. J Vet Diagn Invest 2006; 17:451-7. [PMID: 16312236 DOI: 10.1177/104063870501700507] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to validate a new blocking enzyme-linked immunosorbent assay (ELISA) (designated M108 for milk and S108 for serum samples) for detecting bovine leukemia virus (BLV) infection in dairy cattle. Milk, serum, and ethylenediaminetetraacetic acid-blood samples were collected from 524 adult Holstein cows originating from 6 dairy herds in Central Argentina. The M108 and S108 were compared with agar gel immunodiffusion (AGID), polymerase chain reaction and a commercial ELISA. Because there is currently no reference test capable of serving as a gold standard, the test sensitivity (SE) and specificity (SP) were evaluated by the use of a latent class model. Statistical inference was performed by classical maximum likelihood and by Bayesian techniques. The maximum-likelihood analysis was performed assuming conditional independence of tests, whereas the Bayesian approach allowed for conditional dependence. No clear conclusion could be drawn about conditional dependence of tests. Results with maximum likelihood (under conditional independence) and posterior Bayes (under conditional dependence) were practically the same. Conservative estimates of SE and SP (with 95% confidence intervals) for M108 were 98.6 (96.7; 99.6) and 96.7 (92.9; 98.8) and for S108 99.5 (98.2; 99.9) and 95.4 (90.9; 98.1), respectively. The ELISA 108 using either milk or serum to detect BLV-infected animals had comparable SE and SP with the official AGID and a commercial ELISA test, which are currently the most widely accepted tests for the serological diagnosis of BLV infection. Therefore, ELISA 108 can be used as an alternative test in monitoring and control programs.
Collapse
Affiliation(s)
- Gustavo E Monti
- Universidad Austral de Chile, Instituto de Medicina Preventiva, Facultad de Ciencias Veterinarias, Valdiva, Chile
| | | | | | | | | | | |
Collapse
|
22
|
Ridge SE, Galvin JW. A comparison of two ELISAs for the detection of antibodies to bovine leucosis virus in bulk-milk. Aust Vet J 2005; 83:431-4. [PMID: 16035185 DOI: 10.1111/j.1751-0813.2005.tb13085.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To estimate the sensitivity, specificity and detection limits for two bulk-milk enzyme-linked immunosorbent assays, the Svanovir BLV-gp51-Ab and the Lactelisa BLV Ab Bi indirect tank 250, for the detection of antibody to bovine leucosis virus in milk. PROCEDURE Milk samples from 27 cows known to have enzootic bovine leucosis (EBL) were serially diluted with milk from a herd known to be free from the disease. The dilution at which antibodies could no longer be detected by each test was determined. A total of 1959 bulk-milk samples submitted to a laboratory for the Victorian (EBL) eradication program were tested with both the Svanovir and the Lactelisa assays. A Bayesian approach was used to calculate maximum-likelihood estimates of test sensitivity and specificity. An additional 660 bulk-milk samples were tested with both the Svanovir and the Lactelisa assays. Herds that had positive results on either or both of the assays were subjected to blood or milk testing of individual cattle. RESULTS The dilution of milk at which the Svanovir assay failed to detect enzootic bovine leucosis antibody in half of the samples was 1 in 40, whereas the comparable value for the Lactelisa was 1 in 200. Computer modeling of the operating characteristics of the Svanovir assay indicated that the sensitivity of that assay would be considerably lower than that for the Lactelisa, and the specificity was estimated to be higher. Evaluation of the assays using 660 bulk-milk samples showed that the Lactelisa assay detected four infected herds that were not detected by the Svanovir test. No false positive results were recorded for either assay. CONCLUSION Use of the Lactelisa assay in the Victorian EBL eradication program will enhance disease detection and eradication, but may also result in an increased frequency of false positive bulk-milk test results.
Collapse
Affiliation(s)
- S E Ridge
- CVO Unit, Department of Primary Industries, 475 Mickleham Road, Attwood, Victoria
| | | |
Collapse
|
23
|
Lew AE, Bock RE, Molloy JB, Minchin CM, Robinson SJ, Steer P. Sensitive and specific detection of proviral bovine leukemia virus by 5' Taq nuclease PCR using a 3' minor groove binder fluorogenic probe. J Virol Methods 2004; 115:167-75. [PMID: 14667532 DOI: 10.1016/j.jviromet.2003.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sensitive assays are required to detect proviral bovine leukemia virus (BLV) in donor cattle used for the in vivo preparation of Australian tick fever vaccines. 5' Taq nuclease assays using 3' minor groove binder DNA probes (TaqManMGB) were developed and compared to conventional PCR assays for sensitive detection of Australian BLV. Seven beef and dairy herds were screened using DNA prepared by a variety of protocols to evaluate these tests. Comparative sensitivities of PCR tests were determined by testing log(10) dilutions of plasmids with inserted BLV sequences. Animals were also screened by the BLV standard agar-gel immunodiffusion test (AGID) and commercial enzyme linked immunosorbent assays (ELISA) for antibodies, and an ELISA for detecting viral antigens expressed (VAE) in lymphocyte cultures. The TaqMan MGB assay based on the pol region was the most sensitive and specific for the detection of BLV. This is the first report of a sensitive BLV 5' Taq nuclease assay.
Collapse
Affiliation(s)
- Ala E Lew
- Agency for Food and Fibre Sciences, Queensland Department of Primary Industries, c/o Locked Mail Bag No. 4, 4105, QLD, Moorooka, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- N. F. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| | - V. M. Starodub
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
| |
Collapse
|