1
|
Relationships between the Content of Micro- and Macroelements in Animal Samples and Diseases of Different Etiologies. Animals (Basel) 2023; 13:ani13050852. [PMID: 36899709 PMCID: PMC10000063 DOI: 10.3390/ani13050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Many of the micro- and macro-elements (MMEs) required by the body are found in environmental objects in concentrations different from their original concentration that can lead to dangerous animal diseases ("microelementoses"). The aim was to study the features of MME (accumulating in wild and exotic animals) in connection with particular diseases. The work using 67 mammal species from four Russian zoological institutions was completed in 2022. Studies of 820 cleaned and defatted samples (hair, fur, etc.) after "wet-acid-ashing" on an electric stove and in a muffle furnace were performed using a Kvant-2A atomic absorption spectrometer. The content of zinc, copper, iron, cadmium, lead, and arsenic was assessed. The level of MME accumulation in the animal body contributes not only to the MME status and the development of various concomitant diseases, but the condition itself can occur by intake of a number of micronutrients and/or drugs. Particular correlations between the accumulation of Zn and skin, oncological diseases, Cu-musculoskeletal, cardiovascular diseases, Fe-oncological diseases, Pb-metabolic, nervous, oncological diseases, and Cd-cardiovascular diseases were established. Therefore, monitoring of the MME status of the organism must be carried out regularly (optimally once every 6 months).
Collapse
|
2
|
The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021; 26:molecules26164913. [PMID: 34443494 PMCID: PMC8400259 DOI: 10.3390/molecules26164913] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.
Collapse
|
3
|
Zinc in Dog Nutrition, Health and Disease: A Review. Animals (Basel) 2021; 11:ani11040978. [PMID: 33915721 PMCID: PMC8066201 DOI: 10.3390/ani11040978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary This work compiles the current state of knowledge regarding zinc requirements of healthy dogs and biomarkers of zinc status. To ensure an adequate zinc status, it is important to know the zinc content of foods and their bioavailability to assess the need and the ideal supplementation strategy regarding levels and sources of additives in complete dog foods. As zinc is required for enzymatic, structural, and regulatory functions in the animal body, its nutritional status has been associated with several pathologies that may be due to, or exacerbated by, a deficit of dietary zinc supply. Abstract Zinc is an essential trace element, required for enzymatic, structural, and regulatory functions. As body reserves are scarce, an adequate zinc status relies on proper dietary supply and efficient homeostasis. Several biomarkers have been proposed that enable the detection of poor zinc status, but more sensitive and specific ones are needed to detect marginal deficiencies. The zinc content of commercial dry dog foods has great variability, with a more frequent non-compliance with the maximum authorized limit than with the nutritional requirement. The bioavailability of dietary zinc also plays a crucial role in ensuring an adequate zinc status. Despite controversial results, organic zinc sources have been considered more bioavailable than inorganic sources, albeit the zinc source effect is more evident after a restriction period of dietary zinc. Many disorders have been associated with inadequate zinc status, not being clear whether the occurrence of the disease is the consequence or the cause. This review presents data on zinc requirements and biomarkers for zinc status, that can be applied for the development of supplementation strategies of zinc in complete pet foods. Moreover, it provides an understanding of the role zinc plays in the health of dogs, and how altered zinc status affects diseases in dogs.
Collapse
|
4
|
Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma. Nutrients 2020; 12:nu12103158. [PMID: 33081127 PMCID: PMC7602834 DOI: 10.3390/nu12103158] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.
Collapse
|
5
|
Bucolo C, Fidilio A, Platania CBM, Geraci F, Lazzara F, Drago F. Antioxidant and Osmoprotecting Activity of Taurine in Dry Eye Models. J Ocul Pharmacol Ther 2018; 34:188-194. [DOI: 10.1089/jop.2017.0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Free amino acids: an innovative treatment for ocular surface disease. Eur J Pharmacol 2016; 787:9-19. [DOI: 10.1016/j.ejphar.2016.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 02/02/2023]
|
7
|
Pizzirani S. Definition, Classification, and Pathophysiology of Canine Glaucoma. Vet Clin North Am Small Anim Pract 2016; 45:1127-57, v. [PMID: 26456751 DOI: 10.1016/j.cvsm.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glaucoma is a common ocular condition in humans and dogs leading to optic nerve degeneration and irreversible blindness. Primary glaucoma is a group of spontaneous heterogeneous diseases. Multiple factors are involved in its pathogenesis and these factors vary across human ethnic groups and canine breeds, so the clinical phenotypes are numerous and their classification can be challenging and remain superficial. Aging and oxidative stress are major triggers for the manifestation of disease. Multiple, intertwined inflammatory and biochemical cascades eventually alter cellular and extracellular physiology in the optic nerve and trabecular meshwork and lead to vision loss.
Collapse
Affiliation(s)
- Stefano Pizzirani
- Ophthalmology, Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
8
|
Huang Y, Fan S, Li J, Wang YL. Bilateral Common Carotid Artery Occlusion in the Rat as a Model of Retinal Ischaemia. Neuroophthalmology 2014; 38:180-188. [PMID: 27928297 DOI: 10.3109/01658107.2014.908928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 11/13/2022] Open
Abstract
Ocular ischaemic syndrome is a devastating eye disease caused by severe carotid artery stenosis. The purpose of the study was to develop a reliable rat model for this syndrome by means of common carotid artery occlusion and a controllable needle suture method. Adult Wistar rats were subjected to common carotid artery occlusion and sham surgery. The common carotid artery was ligated unilaterally or bilaterally with needles of different diameters, and ocular arterial filling time was examined by fluorescein fundus angiography at different time points. Haematoxylin-eosin staining of vessels and degree of stenosis were considered outcome measures. The ocular blood flow was monitored and measured by laser doppler flowmetry. Needles with a diameter of 0.4 mm were more effective in developing severe stenosis of the common carotid arteries compared with needles of other diameters. Bilateral common carotid artery occlusion was a more effective model than unilateral occlusion. The arterial filling time was significantly increased at 14 and 21 days after ligation (5.75 ± 0.45 and 6.27 ± 0.95 s, respectively) compared with arterial filling time before surgery (5.22 ± 0.64 s). The total blood flow in the sham surgery group was significantly higher than in the bilateral common carotid artery occlusion group. The fundus blood flow was statistically different between the two groups, whereas that of the anterior segment was not. In conclusion, the authors have established a rat model of ocular ischaemic syndrome via a controllable needle suture method, which was reliable up to 2-3 weeks after surgery.
Collapse
Affiliation(s)
- Yingxiang Huang
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| | - Shichao Fan
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| | - Jun Li
- Peking University Laboratory Animal Centre, Peking University China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| |
Collapse
|
9
|
Chen T, Gionfriddo JR, Tai PY, Novakowski AN, Alyahya K, Madl JE. Oxidative stress increases in retinas of dogs in acute glaucoma but not in chronic glaucoma. Vet Ophthalmol 2014; 18:261-70. [PMID: 24814303 DOI: 10.1111/vop.12177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To test the hypothesis that oxidative stress occurs early in the pathogenesis of glaucoma in dogs. ANIMALS Sections from eight control retinas and 25 retinas from dogs with primary glaucoma. METHODS For retinas embedded in paraffin, sections were immunohistochemically stained for malondialdehyde (MDA) and 3-nitrotyrosine (NT). For retinas embedded in plastic, serial 0.5-μm sections were immunogold-stained for total glutathione, taurine, and glutamate. RESULTS Increased immunostaining for MDA and NT, markers of oxidative stress, occurred in retinal ganglion cells (RGCs) and other neurons in acute glaucoma, but not in chronic glaucoma. In minimally damaged regions, immunostaining for the antioxidant glutathione was decreased in RGCs, neurons of the inner nuclear layer (INL), and Müller cell processes. The loss of glutathione immunostaining in RGCs occurred without a decrease in glutamate immunostaining. Neurons with nuclear damage in the INL had low levels of glutathione, taurine, and glutamate. In severely damaged regions, immunostaining for glutathione was increased in the remaining retinal tissue. CONCLUSIONS Immunohistochemical staining revealed an increase in markers of oxidative stress and loss of glutathione in neurons with minimal damage during acute glaucoma. Oxidative changes were no longer present in chronic glaucomatous retinas, suggesting transient oxidative stress occurs early in glaucoma. The loss of glutathione in minimally damaged regions occurred without a significant redistribution of glutamate, suggesting oxidative stress may occur before glutamate redistribution. Alteration in markers of oxidative stress occurs early in canine glaucoma, suggesting oxidative stress may contribute to subsequent glutamate redistribution and other damaging processes.
Collapse
Affiliation(s)
- Thomas Chen
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Juliet R Gionfriddo
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Pei-Yi Tai
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Anna N Novakowski
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Khaleel Alyahya
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - James E Madl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
10
|
Froger N, Moutsimilli L, Cadetti L, Jammoul F, Wang QP, Fan Y, Gaucher D, Rosolen SG, Neveux N, Cynober L, Sahel JA, Picaud S. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog Retin Eye Res 2014; 41:44-63. [PMID: 24721186 DOI: 10.1016/j.preteyeres.2014.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Taurine is the most abundant amino acid in the retina. In the 1970s, it was thought to be involved in retinal diseases with photoreceptor degeneration, because cats on a taurine-free diet presented photoreceptor loss. However, with the exception of its introduction into baby milk and parenteral nutrition, taurine has not yet been incorporated into any commercial treatment with the aim of slowing photoreceptor degeneration. Our recent discovery that taurine depletion is involved in the retinal toxicity of the antiepileptic drug vigabatrin has returned taurine to the limelight in the field of neuroprotection. However, although the retinal toxicity of vigabatrin principally involves a deleterious effect on photoreceptors, retinal ganglion cells (RGCs) are also affected. These findings led us to investigate the possible role of taurine depletion in retinal diseases with RGC degeneration, such as glaucoma and diabetic retinopathy. The major antioxidant properties of taurine may influence disease processes. In addition, the efficacy of taurine is dependent on its uptake into retinal cells, microvascular endothelial cells and the retinal pigment epithelium. Disturbances of retinal vascular perfusion in these retinal diseases may therefore affect the retinal uptake of taurine, resulting in local depletion. The low plasma taurine concentrations observed in diabetic patients may further enhance such local decreases in taurine concentration. We here review the evidence for a role of taurine in retinal ganglion cell survival and studies suggesting that this compound may be involved in the pathophysiology of glaucoma or diabetic retinopathy. Along with other antioxidant molecules, taurine should therefore be seriously reconsidered as a potential treatment for such retinal diseases.
Collapse
Affiliation(s)
- Nicolas Froger
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France.
| | - Larissa Moutsimilli
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Lucia Cadetti
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Firas Jammoul
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Qing-Ping Wang
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Yichao Fan
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - David Gaucher
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Nouvel hôpital civil, hôpitaux universitaires de Strasbourg and Laboratoire de Bactériologie (EA-7290), Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France
| | - Serge G Rosolen
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Nathalie Neveux
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - Luc Cynober
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Institute of Ophthalmology, University College of London, UK; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; French Academy of Sciences, Paris, France
| | - Serge Picaud
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.
| |
Collapse
|
11
|
El-Sayyad HIH, Khalifa SA, AL-Gebaly AS, El-Mansy AA. Aging related changes of retina and optic nerve of Uromastyx aegyptia and Falco tinnunculus. ACS Chem Neurosci 2014; 5:39-50. [PMID: 24215233 DOI: 10.1021/cn400154k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aging is a biological phenomenon that involves gradual degradation of the structure and function of the retina and optic nerve. To our knowledge, little is known about the aging-related ocular cell loss in avian (Falco tinnunculus) and reptilian species (Uromastyx aegyptia). A selected 90 animals of pup, middle, and old age U. aegyptia (reptilian) and F. tinnunculus (avian) were used. The retinae and optic nerves were investigated by light and transmission electron microscopy (TEM) and assessments of neurotransmitters, antioxidant enzymes (catalase, superoxide dismustase and glutathione s transferase), caspase-3 and -7, malonadialdhyde, and DNA fragmentation. Light and TEM observations of the senile specimens revealed apparent deterioration of retinal cell layers, especially the pigmented epithelium and photoreceptor outer segments. Their inclusions of melanin were replaced by lipofuscins. Also, vacuolar degeneration and demyelination of the optic nerve axons were detected. Concomitantly, there was a marked increase of oxidative stress involved reduction of neurotransmitters and antioxidant enzymes and an increase of lipid peroxidation, caspase-3 and -7, subG0/G1 apoptosis, and P53. We conclude that aging showed an inverse relationship with the neurotransmitters and antioxidant enzymes and a linear relationship of caspases, malondialdhyde, DNA apoptosis, and P53 markers of cell death. These markers reflected the retinal cytological alterations and lipofuscin accumulation within inner segments.
Collapse
Affiliation(s)
| | - Soad A. Khalifa
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| | - Asma S. AL-Gebaly
- Department of Biology, Science College, Princess Noura Bint Abdul Rahman University, Riyadh 11421, Kingdom of Saudia Arabia
| | - Ahmed A. El-Mansy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| |
Collapse
|
12
|
Evaluation of the taurine concentrations in dog plasma and aqueous humour: a pilot study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:145-54. [PMID: 23392931 DOI: 10.1007/978-1-4614-6130-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the 70s, the amino acid taurine was found essential for photoreceptor survival. Recently, we found that taurine depletion can also trigger retinal ganglion cell degeneration both in vitro and in vivo. Therefore, evaluation of taurine levels could be a crucial biomarker for different pathologies of retinal ganglion cells such as glaucoma. Because different breeds of dog can develop glaucoma, we performed taurine measurements on plasma and aqueous humour samples from pet dogs. Here, we exposed results from a pilot study on normal selected breed of pet dogs, without any ocular pathology. Samples were collected by veterinarians who belong to the Réseau Européen d'Ophtalmologie Vétérinaire et de Vision Animale. Following measurements by high-performance liquid chromatography (HPLC), the averaged taurine concentration was 162.3 μM in the plasma and 51.8 μM in the aqueous humour. No correlation was observed between these two taurine concentrations, which exhibited a ratio close to 3. Further studies will determine if these taurine concentrations are changed in glaucomatous dogs.
Collapse
|
13
|
Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One 2012; 7:e42017. [PMID: 23115615 PMCID: PMC3480351 DOI: 10.1371/journal.pone.0042017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/29/2012] [Indexed: 12/21/2022] Open
Abstract
Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.
Collapse
|
14
|
Funke S, Azimi D, Wolters D, Grus FH, Pfeiffer N. Longitudinal analysis of taurine induced effects on the tear proteome of contact lens wearers and dry eye patients using a RP-RP-Capillary-HPLC–MALDI TOF/TOF MS approach. J Proteomics 2012; 75:3177-90. [DOI: 10.1016/j.jprot.2012.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
|
15
|
da Silva EG, Gionfriddo JR, Hudachek SF, Gustafson DL, Olea-Popelka FJ, Scofield VL, Powell CC, Hill AE. Evaluation of the ocular penetration of topical alpha-luminol (Galavit®/GVT®). Vet Ophthalmol 2011; 14:180-5. [PMID: 21521442 DOI: 10.1111/j.1463-5224.2010.00862.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Oxidative stress plays a major role in the pathogenesis of many neurodegenerative diseases. It has also been implicated as part of the pathogenic mechanisms in the development of glaucoma. Alpha-luminol has shown profound anti-inflammatory and antioxidant effects in both experimental animal and human clinical studies. The purpose of this pilot study was to investigate for the first time the ocular penetration of topical alpha-luminol. METHODS Nine animals were divided into three treated groups (three animals each; one drop OU/n = 18), each group receiving a different concentration of the eyedrop (0.5%, 1.5%, 2.5%). Aqueous humor and peripheral blood samples were obtained from each rabbit at three different timepoints (20 min, 4 h and 12 h). Samples were analyzed by means of high performance liquid chromatography and mass spectrometry; median values were compared. RESULTS Alpha-luminol was found in the aqueous humor in all treated groups at all timepoints. At the 2nd and 3rd timepoints (4 h and 12 h), aqueous humor levels decreased significantly (P < 0.05) for two of the three dosages tested and it was not detectable in some eyes. The highest aqueous humor concentration of the drug was 272 ng/mL after 20 min (0.0217% of one drop, 2.5% group). Alpha-luminol was found in the vitreous in two animals, one in the 1.5% and another in the 2.5% group (16.4 and 21.5 ng/mL, respectively), at 12 h. CONCLUSIONS Topically administered alpha-luminol readily penetrates into the anterior chamber and can penetrate into the vitreous chamber. Further investigation is warranted to better understand the intraocular pharmacokinetics of alpha-luminol.
Collapse
Affiliation(s)
- Enry G da Silva
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine, Fort Collins, CO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gionfriddo JR, Freeman KS, Groth A, Scofield VL, Alyahya K, Madl JE. alpha-Luminol prevents decreases in glutamate, glutathione, and glutamine synthetase in the retinas of glaucomatous DBA/2J mice. Vet Ophthalmol 2009; 12:325-32. [PMID: 19751494 DOI: 10.1111/j.1463-5224.2009.00722.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To test the hypothesis that in DBA/2J mice, oxidative stress decreases glutamine synthetase (GS) levels resulting in a loss of neuronal glutamate and that the antioxidant alpha-luminol (GVT) decreases this stress and glutamate loss in some types of glaucoma. ANIMALS DBA/2J mice were separated into two groups, of which one was not treated, and the other treated with GVT in the drinking water. At 7 months of age, retinas were examined from five untreated DBA/2J mice, seven GVT-treated mice, and five C57BL/6 mice (negative controls). METHODS Serial 0.5 microm plastic sections were immunogold stained for glutamate, GS, and total glutathione, followed by image analysis for staining patterns and density. RESULTS Focal decreases in glutamate immunostaining were common in the inner nuclear layer (INL) of DBA/2J retinas, but not in C57BL/6 or GVT-treated DBA/2J retinas. Decreases in glutathione and GS immunostaining were found in DBA/2J retinal regions where neuronal glutamate immunostaining was reduced. Retinas from GVT-treated DBA/2J had no significant decreases in INL levels of glutamate, glutathione, or GS. CONCLUSIONS Retinas of dogs with primary glaucoma are reported to have focal depletion of neuronal glutamate. In DBA/2J mice, similar changes occur prior to the development of clinical disease. In these focal glutamate-depleted regions, levels of glutathione and GS are also reduced, consistent with the hypothesis that oxidative stress contributes to retinal changes in glaucoma. The ability of GVT, an antioxidant, to inhibit retinal abnormalities in DBA/2J mice provides further support for this hypothesis.
Collapse
Affiliation(s)
- Juliet R Gionfriddo
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
17
|
Chen CT, Alyahya K, Gionfriddo JR, Dubielzig RR, Madl JE. Loss of glutamine synthetase immunoreactivity from the retina in canine primary glaucoma. Vet Ophthalmol 2008; 11:150-7. [DOI: 10.1111/j.1463-5224.2008.00581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Obolensky A, Berenshtein E, Konijn AM, Banin E, Chevion M. Ischemic preconditioning of the rat retina: protective role of ferritin. Free Radic Biol Med 2008; 44:1286-94. [PMID: 18082149 DOI: 10.1016/j.freeradbiomed.2007.10.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 01/21/2023]
Abstract
Ischemic preconditioning (IPC) of the retina, accomplished by ischemia of short duration, is highly effective in preventing subsequent severe injury caused by iron-dependent free radical burst after prolonged ischemia. To investigate the mechanistic basis for IPC rescue, we examined changes in the levels of the retinal redox-active and labile iron pool, ferritin, and ferritin-bound iron. Prolonged ischemia severely impaired retinal function, with total loss of the full-field electroretinographic response. IPC provided marked protection against such injury. Histological examination revealed that ischemia-associated structural damage and loss of cells in the outer and inner nuclear layers were largely prevented by IPC. Ferritin levels decreased after prolonged ischemia but remained close to normal when the ischemic episode was preceded by IPC. The protective effect of IPC on retinal function and ferritin was blocked by a zinc-desferrioxamine complex known to interfere with iron signaling. The results suggest a mechanism whereby IPC activates an iron signaling pathway leading to a marked increase in ferritin levels, which mediates resistance to prolonged ischemia.
Collapse
Affiliation(s)
- Alexey Obolensky
- Department of Ophthalmology, The Hebrew University-Hadassah Schools of Medicine and Dental Medicine, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
19
|
Savagian CA, Dubielzig RR, Nork TM. Comparison of the distribution of glial fibrillary acidic protein, heat shock protein 60, and hypoxia-inducible factor-1α in retinas from glaucomatous and normal canine eyes. Am J Vet Res 2008; 69:265-72. [DOI: 10.2460/ajvr.69.2.265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Alyahya K, Chen CT, Mangan BG, Gionfriddo JR, Legare ME, Dubielzig RR, Madl JE. Microvessel loss, vascular damage and glutamate redistribution in the retinas of dogs with primary glaucoma. Vet Ophthalmol 2007; 10 Suppl 1:70-7. [DOI: 10.1111/j.1463-5224.2007.00562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Affiliation(s)
- Domalapalli Maneesh Kumar
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | |
Collapse
|
22
|
Low HC, Gionfriddo JR, Madl JE. Assessment of glutamate loss from the ganglion cell layer of young DBA/2J mice with glaucoma. Am J Vet Res 2006; 67:302-9. [PMID: 16454637 DOI: 10.2460/ajvr.67.2.302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether glutamate contents are decreased in the ganglion cell layer (GCL) of retinas of DBA/2J mice with glaucoma, compared with unaffected control mice. SAMPLE POPULATION 20 eyes from DBA/2J mice (9-week-old mice [n = 8] and 4- [4], 6- [4], and 12-month-old [4] mice) and 17 eyes from control CD-1 (7) and C57/BL6 (10) mice of similar age. PROCEDURE After euthanasia, the eyes were rapidly dissected and fixed. Serial 0.5-microm sections were prepared from eyecups and stained with toluidine blue (to identify damaged cells) or immunogold (to localize glutamate). Microscopic images were captured digitally for comparison; immunostaining densities were assessed via special software. RESULTS In the GCL of control mice, few cells appeared damaged; large amounts of glutamate were detected in 83 +/- 8.3% of cells. In DBA/2J mice > or = 9 weeks of age, damaged neurons were observed in retinal sections; the level of glutamate immunoreactivity was high in a few cells near areas of damage (13 +/- 3.2%) and in many cells in less-damaged regions of the same sections (82 +/- 4.2%). Many neurons with low amounts of glutamate in damaged regions did not appear damaged histologically. CONCLUSIONS AND CLINICAL RELEVANCE In retinas of young DBA/2J mice, damaged and undamaged GCL cells had decreased levels of immunostaining for glutamate, compared with less-damaged adjacent regions or retinas from control mice. The loss of neuronal glutamate in damaged retinal regions suggests that glutamate is contributing to early retinal damage prior to changes in intraocular pressure.
Collapse
Affiliation(s)
- Heather C Low
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|