1
|
de Brito JM, Mauad T, Cavalheiro GF, Yoshizaki K, de André PA, Lichtenfels AJFC, Guimarães ET, Rivero DHRF, Antonangelo L, Oliveira LB, Pedroso LRM, Macchione M, Saldiva PHN. Acute exposure to diesel and sewage biodiesel exhaust causes pulmonary and systemic inflammation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1223-1233. [PMID: 30045544 DOI: 10.1016/j.scitotenv.2018.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Biodiesel is a renewable energy source that reduces particle emission, but few studies have assessed its effects. To assess the effects of acute inhalation of two doses (600 and 1200 μg/m3) of diesel (DE) and biodiesel (BD) fuels on the inflammatory pulmonary and systemic profile of mice. Animals were exposed for 2 h in an inhalation chamber inside the Container Laboratory for Fuels. Heart rate, heart rate variability (HRV) and blood pressure were determined 30 min after exposure. After 24 h, we analyzed the lung inflammation using bronchoalveolar lavage fluid (BALF); neutrophil and macrophage quantification in the lung parenchyma was performed, and blood and bone marrow biomarkers as well as receptor of endothelin-A (ET-Ar), receptor of endothelin-B (ET-Br), vascular cell adhesion molecule 1 (VCAM-1), inducible nitric oxide synthase (iNOs) and isoprostane (ISO) levels in the pulmonary vessels and bronchial epithelium were evaluated. HRV increased for BD600, D600 and D1200 compared to filtered air (FA). Both fuels (DE and BD) produced alterations in red blood cells independent of the dose. BALF from the BD600 and BD1200 groups showed an increase in neutrophils compared to those of the FA group. Numeric density of the polymorphonuclear and mononuclear cells was elevated with BD600 compared to FA. In the peribronchiolar vessels, there was an increase in ET-Ar and ET-Br expression following BD600 compared to FA; and there was a reduction in the iNOs expression for BD1200 and the VCAM-1 for D1200 compared to FA. In the bronchial epithelium, there was an increase in ETAr at BD600, ET-Br at two doses (600 and 1200 μg/m3) of DE and BD, iNOs at D600 and VCAM-1 at BD1200 and D600; all groups were compared to the FA group. Acute exposure to DE and BD derived from sewage methyl esters triggered pulmonary and cardiovascular inflammatory alterations in mice.
Collapse
Affiliation(s)
- Jôse Mára de Brito
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Thais Mauad
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Guilherme Franco Cavalheiro
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Paulo Afonso de André
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Ana Julia F C Lichtenfels
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Eliane Tigre Guimarães
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | - Leila Antonangelo
- Department of Pathology, Clinical Laboratory, LIM 03 - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Luciano Basto Oliveira
- Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro UFRJ, Rio de Janeiro, RJ, Brazil; Eco 100 Sustained Development LTDA, Rio de Janeiro, RJ, Brazil.
| | | | - Mariangela Macchione
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Gauff FC, Patan-Zugaj B, Licka TF. Effect of short-term hyperinsulinemia on the localization and expression of endothelin receptors A and B in lamellar tissue of the forelimbs of horses. Am J Vet Res 2014; 75:367-74. [PMID: 24669922 DOI: 10.2460/ajvr.75.4.367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine the effect of short-term hyperinsulinemia on the localization and expression of endothelin receptor (ETR)-A and ETR-B in lamellar tissue of the forelimbs of horses. SAMPLES Distal portion of 15 cadaveric forelimbs from healthy adult horses (1 limb/horse) obtained immediately after slaughter at an abattoir. PROCEDURES Each forelimb was assigned to 1 of 3 treatment groups (perfused with autologous blood for 10 hours [control perfusion; n = 5], perfused with an insulin [142 ± 81 μU/mL] perfusate for 10 hours [insulinemic perfusion; 5], or not perfused [unperfused control; 5]). Immunohistochemical evaluation of lamellar tissue was performed to assess localization of ETR-A and ETR-B. Expression of ETR-A and ETR-B was measured semiquantitatively on a scale of 0 to 3 (0 = none, 1 = mild, 2 = moderate, and 3 = high-intensity staining) and quantitatively by means of gray value analysis with imaging software. RESULTS In all specimens, ETR-A and ETR-B were localized in endothelium, smooth muscle cells, axons, and keratinocytes. Quantitative expression of ETR-A in the midportion of the primary epidermal lamellae for the insulinemic perfusion group (149 ± 16) was lower than that for the control perfusion group (158 ± 15). Expression of ETR-B in the primary epidermal lamellae tips for the insulinemic perfusion group (140 ± 29) was higher than that for the control perfusion group (114 ± 8). CONCLUSIONS AND CLINICAL RELEVANCE Hyperinsulinemia caused significant changes in endothelin receptor expression, which suggested that ETR antagonists might be beneficial for treatment of laminitis in horses.
Collapse
Affiliation(s)
- Felicia C Gauff
- Department of Horses and Small Animals, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | | | | |
Collapse
|
3
|
Venugopal C, Mariappan N, Holmes E, Kearney M, Beadle R. Effect of potential therapeutic agents in reducing oxidative stress in pulmonary tissues of recurrent airway obstruction-affected and clinically healthy horses. Equine Vet J 2012; 45:80-4. [PMID: 22506732 DOI: 10.1111/j.2042-3306.2012.00566.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY To determine and compare the reactive oxygen and nitrogen species (ROS and RNS) in pulmonary tissues of horses affected with recurrent airway obstruction (RAO) and clinically healthy horses, and to evaluate the effectiveness of potential therapeutic agents in reducing ROS and RNS in the tissues of these horses. OBJECTIVES We hypothesised that RAO-affected horses would have high levels of reactive species and that the test agents would reduce them. The objectives were as follows: 1) to determine the level of ROS and RNS in pulmonary tissues (bronchial and arterial rings) of RAO-affected and clinically healthy horses; and 2) to determine the ability of pentoxifylline, pyrrolidine-dithiocarbamate and a combined use of endothelin A and B receptor antagonists (BQ123 and BQ788, respectively) in reducing reactive species. METHODS Arterial and bronchial rings were collected from the diaphragmatic lung lobe of each horse immediately after euthanasia. The levels of ROS and RNS were measured in control tissues and those incubated with test agents, using an electron paramagnetic resonance instrument. RESULTS The levels of ROS and RNS were significantly greater in arterial and bronchial tissues of RAO-affected than of clinically healthy horses. Pentoxifylline and endothelin antagonists reduced both ROS and RNS in tissues from RAO-affected horses. Basal levels of reactive species in clinically healthy horses were not affected by these agents. No difference in the level of reactive species was observed between arterial and bronchial tissues. CONCLUSIONS Horses affected by RAO had higher ROS and RNS than clinically healthy horses. Pentoxifylline and endothelin antagonists effectively reduced ROS and RNS in pulmonary tissues of RAO-affected horses. POTENTIAL RELEVANCE The study suggested a potential use for pentoxifylline and endothelin antagonists in treating RAO-affected horses. As endothelin is involved in physiological functions, therapeutic use of its antagonists is cautioned.
Collapse
Affiliation(s)
- C Venugopal
- Equine Health Studies Program, Department of Veterinary Sciences, School of Veterinary Medicine, Louisiana State University, LA, USA.
| | | | | | | | | |
Collapse
|
4
|
Venugopal C, Mariappan N, Holmes E, Koch C, Francis J, Eades S. Oxidative Stress and Interaction of Endothelin Receptors in Airways of Clinically Healthy Horses. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Costa LRR, Eades SC, Venugopal CS, Moore RM. Plasma and pulmonary fluid endothelin in horses with seasonal recurrent airway obstruction. J Vet Intern Med 2009; 23:1239-46. [PMID: 19761476 DOI: 10.1111/j.1939-1676.2009.0385.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Summer pasture-associated recurrent airway obstruction (SPA-RAO), a seasonal airway obstructive disease of horses, is characterized by clinical exacerbation after exposure to pasture during warm months of the year. Endothelin (ET)-1, potent bronchoconstrictor, mitogen, secretagogue, and proinflammatory mediator, has been implicated in the pathogenesis of asthma and equine heaves. HYPOTHESIS Immunoreactive ET-1 concentrations increase during clinical exacerbation and return to basal values during periods of disease remission. ANIMALS Twelve horses, 6 affected with SPA-RAO and 6 nonaffected. METHODS Prospective, observational study. Bronchoalveolar lavage fluid (BALF), arterial and venous plasma samples, and clinical variables were obtained from affected horses during clinical exacerbation and remission. Samples and data of nonaffected horses were collected during the summer and winter on dates similar to affected horses. Immunoreactive ET-1 was determined using a commercial ELISA. RESULTS The median and range ET-1 concentrations (pg/ml) in arterial (1.3, 0.7-1.8) and venous (1.3, 1.2-1.7) plasma and in BALF (0.3, 0.2-0.4), and pulmonary epithelial lining fluid (PELF) (25.5, 21-50) were greater in affected horses during clinical exacerbation compared with remission (P < .01). The concentrations of immunoreactive ET-1 were greater in affected horses during clinical exacerbation compared with nonaffected horses (P < .05). CONCLUSIONS AND CLINICAL IMPORTANCE During clinical exacerbation of SPA-RAO, ET-1 is increased in circulation and pulmonary secretions. Intervention with ET receptor antagonists should provide further information on the role of ET-1 in SPA-RAO.
Collapse
Affiliation(s)
- L R R Costa
- Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, LA, USA.
| | | | | | | |
Collapse
|