1
|
Nosalova N, Huniadi M, Horňáková Ľ, Valenčáková A, Horňák S, Nagoos K, Vozar J, Cizkova D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int J Mol Sci 2024; 25:2891. [PMID: 38474142 DOI: 10.3390/ijms25052891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.
Collapse
Affiliation(s)
- Natalia Nosalova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Slavomir Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Kamil Nagoos
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
2
|
Fonghem P, Pisitkun T, Rattanapinyopituk K, Sirivisoot S, Rungsipipat A. Investigation of proteomic profiles in canine lymphoma using tandem mass tag-based quantitative proteomics approach. Vet World 2022; 15:1333-1340. [PMID: 35765478 PMCID: PMC9210836 DOI: 10.14202/vetworld.2022.1333-1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Specific tumor biomarkers are useful for the early diagnosis of cancer or can predict the recurrence of neoplastic disease in humans and animals. Lymphoma in dogs could be classified into B-, T-, and NK-cell origins. T-cell lymphoma has the worst prognosis with a shorter survival time and disease-free interval. This study aimed to identify the differential serum protein expressions of canine B- and T-cell lymphomas compared with healthy dogs using a tandem mass tag (TMT)-based quantitative proteomics. Materials and Methods: Serum samples were collected from 20 untreated canine lymphomas (14 B-cells and 6 T-cells) and four healthy control dogs. Sera peptides from each sample were processed for TMT 10-plex tagging and analyzed using liquid chromatography-mass spectrometry (MS). Differential proteome profiling was then compared between lymphoma and control. Results: We discovered 20 elevated and 14 decreased serum proteins in the lymphoma group relative to the healthy group. Six candidate increased proteins in canine lymphomas were beta-actin cytoplasmic 1 (ACTB, p=0.04), haptoglobin (p=0.002), beta-2 microglobulin (aaaaaaaa2M, p=0.007), beta-2 glycoprotein 1 (APOH, p=0.03), metalloproteinase inhibitor 1 (TIMP-1, p=0.03), and CD44 antigen (p=0.02). When compared between B- and T-cell lymphomas, B-cell phenotypes had upregulated immunoglobulin (Ig) heavy chain V region GOM (p=0.02), clusterin (p=0.01), apolipoprotein C1 (APOC1, p=0.05), and plasminogen (p=0.02). Conclusion: These findings were investigated quantitative serum proteomes between B- and T-cell lymphomas using TMT-based MS. ACTB, aaaaaaaa2M, APOH, TIMP-1, CD44 antigen, Ig heavy chain V region GOM, and APOC1 are novel candidate proteins and might serve as a lymphoma biomarker in dogs. However, evaluation with an increased sample size is needed to confirm their diagnostic and prognostic ability.
Collapse
Affiliation(s)
- Piyanoot Fonghem
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Parachini-Winter C, Bracha S, Ramsey SA, Yang L, Ho E, Leeper HJ, Curran KM. Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. J Vet Intern Med 2020; 34:2036-2047. [PMID: 32926463 PMCID: PMC7517837 DOI: 10.1111/jvim.15898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic‐targeting compound, has recently gained interest in relation to cancer prevention and therapy. Objective Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. Animals Seven client‐owned dogs with multicentric LSA. Methods Prospective, nonrandomized, noncontrolled study in treatment‐naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label‐free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. Results There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2‐fold (range, 2‐100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. Conclusions and Clinical Importance Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.
Collapse
Affiliation(s)
- Cyril Parachini-Winter
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Liping Yang
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute and College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Gourlan AT, Douay G, Telouk P. Copper isotopes as possible neoplasia biomarkers in captive wild felids. Zoo Biol 2019; 38:371-383. [PMID: 31257640 DOI: 10.1002/zoo.21504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
The longevity of zoo animals is increasing due to continuous improvement in husbandry and veterinary medicine. However, increasing age is correlated to a higher prevalence of neoplasia. Despite tremendous improvement in diagnoses and monitoring capacities, cancers are still a challenge for veterinarians within the global zoo community. The recent use of copper isotopes as biomarkers for neoplasia in both human and veterinary medicine is a promising and cost-effective diagnostic tool. Two hundred and twenty-nine serum samples from 10 different species of wild felids under human care were processed through mass spectrometry to determine the ratio of heavy and light copper isotopes (65 Cu/63 Cu). The results of this preliminary study exhibit an important variability between felid species, with a ratio ranging between -1.71 and 0.63. Additionally, copper isotopes seem to be a promising diagnostic tool in monitoring cancer in wild animals, as in human medicine, where the isotopic ratio decreases significantly with time in the presence of a tumor.
Collapse
Affiliation(s)
- Alexandra T Gourlan
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
| | - Guillaume Douay
- Conservation, Research and Veterinary Services, Wildlife Reserves Singapore, Singapore, Singapore
| | | |
Collapse
|
5
|
|
6
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
7
|
Morris JS. Genomic and proteomic profiling for cancer diagnosis in dogs. Vet J 2016; 215:101-9. [DOI: 10.1016/j.tvjl.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022]
|
8
|
|
9
|
Personalised medicine in veterinary oncology: One to cure just one. Vet J 2015; 205:128-35. [DOI: 10.1016/j.tvjl.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
|
10
|
Mirkes E, Alexandrakis I, Slater K, Tuli R, Gorban A. Computational diagnosis and risk evaluation for canine lymphoma. Comput Biol Med 2014; 53:279-90. [DOI: 10.1016/j.compbiomed.2014.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
11
|
Miller I, Preßlmayer-Hartler A, Wait R, Hummel K, Sensi C, Eberini I, Razzazi-Fazeli E, Gianazza E. In between — Proteomics of dog biological fluids. J Proteomics 2014; 106:30-45. [DOI: 10.1016/j.jprot.2014.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/25/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
12
|
Mobasheri A. Exploring the serum proteome in dogs: Setting the scene for the discovery of new biomarkers in canine lymphoma. Vet J 2013; 196:286-7. [DOI: 10.1016/j.tvjl.2013.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
|
13
|
Changes in the serum proteome of canine lymphoma identified by electrophoresis and mass spectrometry. Vet J 2013; 196:320-4. [DOI: 10.1016/j.tvjl.2012.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 11/24/2022]
|
14
|
Hematopoietic Tumors. WITHROW AND MACEWEN'S SMALL ANIMAL CLINICAL ONCOLOGY 2013. [PMCID: PMC7161412 DOI: 10.1016/b978-1-4377-2362-5.00032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Abstract
The identification of biomarkers that distinguish diseased from normal individuals is of intense interest in many health-related fields. Potential applications for biomarkers in veterinary oncology include diagnosis, staging, prognosis and monitoring responses to therapy. By definition, effective biomarkers for cancer screening facilitate disease identification in sub-clinically affected patients and lead to subsequent improvements in clinical outcome. Although the methods and techniques of biomarker discovery and clinical application are translatable from humans to animals, veterinary medicine has lagged behind its human counterpart in several areas. Veterinarians have previously had a flawed understanding of how to use biomarker assays appropriately and have not had the positive influence on product research and development that could advance this field. The controversies, potentials biases, and considerations relative to the clinical application of biomarker assays for cancer screening are discussed in this review.
Collapse
Affiliation(s)
- Carolyn J Henry
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
16
|
Matharoo-Ball B, Miles AK, Creaser CS, Ball G, Rees R. Serum biomarker profiling in cancer studies: a question of standardisation? Vet Comp Oncol 2009; 6:224-47. [PMID: 19178682 DOI: 10.1111/j.1476-5829.2008.00171.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Companion animals are exposed to similar environmental conditions and carcinogens as humans. In some animal cancers, there also appears to be the same genetic changes associated as in humans. However, little work has been carried out in cancer biomarker identification in animals. The recent dramatic advances in molecular medicine, genomics, proteomics and translational research will allow biomarker identification, which may provide the best strategies for veterinarians and clinicians to combat disease by early diagnosis and administration of effective treatments. Proteomics may have important applications in cancer diagnosis, prognosis and predictive clinical outcome that could directly change clinical practice by affecting critical elemen-ts of care and management. This review summarizes the advances in proteomics that has propelled us to this exciting age of clinical proteomics, and highlights the future work that is required for this to become a reality. In this review, we will discuss the available proteomic technologies and their limitations, and highlight the key areas of research and how they have been used to discover cancer biomarkers. The principles described here are equally applicable to human and animal disease, but implementation of 'omic' technologies requires stringent guidelines for collection of clinical material, the application of analytical techniques and interpretation of the data.
Collapse
Affiliation(s)
- B Matharoo-Ball
- The John Van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | | | | | |
Collapse
|
17
|
Proteomics and naturally occurring animal diseases: Opportunities for animal and human medicine. Proteomics Clin Appl 2008; 2:135-41. [DOI: 10.1002/prca.200780085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|