1
|
van Renen J, Kehl A, Buhmann G, Matiasek LA, Zablotski Y, Fischer A. Allele frequency of a genetic risk variant for necrotizing meningoencephalitis in pug dogs from Europe and association with the clinical phenotype. Front Vet Sci 2024; 11:1407288. [PMID: 38840637 PMCID: PMC11150678 DOI: 10.3389/fvets.2024.1407288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Necrotizing meningoencephalitis (NME) in pugs is a potentially fatal disease, which needs lifelong treatment with immunosuppressive or immunomodulatory drugs and shares parallels with acute fulminating multiple sclerosis. Genetic variants of the DLA class II gene are associated with an increased risk for NME. Genetic testing is recommended prior to breeding. The aim of this study was to describe the current allele frequency of a previously identified NME risk variant in the European pug population. A secondary aim was to investigate the association of the NME risk variant with the clinical phenotype in pugs. Methods Results of genetic testing for the CFA12:2605517delC variant in European pugs between 2012 and 2020 were retrieved (n = 5,974). A validated questionnaire was mailed to all submitters of samples for further information on neurological signs, diagnostic tests, and disease course. Results The allele frequency of the CFA12 NME risk variant was 25.7% in the European pug population dogs; 7.4% of the dogs were homozygous and 36.7% were heterozygous for the NME risk variant on CFA12. Completed questionnaires were available in 203 dogs including 25 dogs with epileptic seizures or other neurological signs. The clinical phenotype was consistent with NME in 3.9% with a median age of onset of 1.0 years, and indicative of idiopathic epilepsy in 2.9% with a median onset of 2.5 years. Eleven dogs remained unclassified. Pugs with the NME phenotype were significantly more frequently homozygous for the NME risk variant on CFA12 compared to pugs ≥6 years without neurological signs or seizures (p = 0.008). Discussion The CFA12:2605517delC genetic risk variant is widely distributed in the European pug population and frequently homozygous in pugs with a NME phenotype. The data support the clinical relevance of the CFA12:2605517delC genetic risk variant.
Collapse
Affiliation(s)
- Jana van Renen
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Kehl
- Laboklin, Bad Kissingen, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Gesine Buhmann
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lara A. Matiasek
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yury Zablotski
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Fischer
- Small Animal Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Andersen-Ranberg E, Berendt M, Gredal H. Biomarkers of non-infectious inflammatory CNS diseases in dogs - Where are we now? Part I: Meningoencephalitis of unknown origin. Vet J 2021; 273:105678. [PMID: 34148601 DOI: 10.1016/j.tvjl.2021.105678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Meningoencephalitides of Unknown Origin (MUO) comprises a group of non-infectious inflammatory brain conditions, which frequently cause severe neurological disease and death in dogs. Although multiple diagnostic markers have been investigated, a conclusive diagnosis, at present, essentially relies on postmortem histopathology. However, different groups of biomarkers, e.g. acute phase proteins, antibodies, cytokines, and neuro-imaging markers may prove useful in the diagnostic investigation of dogs with MUO. It appears from the current literature that acute phase proteins such as C-reactive protein are often normal in MUO, but may be useful to rule out steroid responsive meningitis-arteritis as well as other systemic inflammatory conditions. In antibody research, anti-glial fibrillary acidic protein (GFAP) may play a role, but further research is needed to establish this as a consistent marker of particularly Pug dog encephalitis. The proposed diagnostic markers often lack specificity to distinguish between the subtypes of MUO, but an increased expression of interferon-γ (IFN-γ) in necrotizing meningoencephalitis (NME) and interleukin-17 (IL-17) in granulomatous meningoencephalitis (GME) in tissue biopsies may indicate their potential as specific markers of NME and GME, respectively, suggesting further investigations of these in serum and CSF. While neuro-imaging is already an important part of the diagnostic work-up in MUO, further promising results have been shown with Positron Emission Tomography (PET) as well as proton resonance spectroscopy (1H MRS), which may be able to detect areas of necrosis and granulomas, respectively, with relatively high specificity. This review presents different groups of established and potential diagnostic markers of MUO assessing current results and future potential.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- Copenhagen University, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark
| | - Mette Berendt
- Copenhagen University, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark
| | - Hanne Gredal
- Copenhagen University, Department of Veterinary Clinical Sciences, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Michaels DL, Leibowitz JA, Azaiza MT, Shil PK, Shama SM, Kutish GF, Distelhorst SL, Balish MF, May MA, Brown DR. Cellular Microbiology of Mycoplasma canis. Infect Immun 2016; 84:1785-1795. [PMID: 27045036 PMCID: PMC4907131 DOI: 10.1128/iai.01440-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/28/2016] [Indexed: 12/27/2022] Open
Abstract
Mycoplasma canis can infect many mammalian hosts but is best known as a commensal or opportunistic pathogen of dogs. The unexpected presence of M. canis in brains of dogs with idiopathic meningoencephalitis prompted new in vitro studies to help fill the void of basic knowledge about the organism's candidate virulence factors, the host responses that it elicits, and its potential roles in pathogenesis. Secretion of reactive oxygen species and sialidase varied quantitatively (P < 0.01) among strains of M. canis isolated from canine brain tissue or mucosal surfaces. All strains colonized the surface of canine MDCK epithelial and DH82 histiocyte cells and murine C8-D1A astrocytes. Transit through MDCK and DH82 cells was demonstrated by gentamicin protection assays and three-dimensional immunofluorescence imaging. Strains further varied (P < 0.01) in the extents to which they influenced the secretion of tumor necrosis factor alpha (TNF-α) and the neuroendocrine regulatory peptide endothelin-1 by DH82 cells. Inoculation with M. canis also decreased major histocompatibility complex class II (MHC-II) antigen expression by DH82 cells (P < 0.01), while secretion of gamma interferon (IFN-γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and complement factor H was unaffected. The basis for differences in the responses elicited by these strains was not obvious in their genome sequences. No acute cytopathic effects on any homogeneous cell line, or consistent patterns of M. canis polyvalent antigen distribution in canine meningoencephalitis case brain tissues, were apparent. Thus, while it is not likely a primary neuropathogen, M. canis has the capacity to influence meningoencephalitis through complex interactions within the multicellular and neurochemical in vivo milieu.
Collapse
Affiliation(s)
- Dina L Michaels
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jeffrey A Leibowitz
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohammed T Azaiza
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Pollob K Shil
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Suzanne M Shama
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Gerald F Kutish
- Department of Pathobiology and Veterinary Science and Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut, USA
| | | | | | - Meghan A May
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
| | - Daniel R Brown
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Shiel RE, Kennedy LJ, Nolan CM, Mooney CT, Callanan JJ. Major histocompatibility complex class II alleles and haplotypes associated with non-suppurative meningoencephalitis in greyhounds. ACTA ACUST UNITED AC 2014; 84:271-6. [PMID: 24851745 DOI: 10.1111/tan.12365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Abstract
Non-suppurative meningoencephalitis is a breed-restricted canine neuroinflammatory disorder affecting young greyhounds in Ireland. A genetic risk factor is suspected because of the development of disease in multiple siblings and an inability to identify a causative infectious agent. The aim of this study was to examine potential associations between dog leucocyte antigen (DLA) class II haplotype and the presence of the disease. DLA three locus haplotypes were determined in 31 dogs with non-suppurative meningoencephalitis and in 115 healthy control dogs using sequence-based typing (SBT) methods. All dogs were unrelated at the parental level. Two haplotypes (DRB1*01802/DQA1*00101/DQB1*00802 and DRB1*01501/DQA1*00601/DQB1*02201) were significantly (P = 0.0099 and 0.037) associated with the presence of meningoencephalitis, with odds ratios (95% confidence interval) of 5.531 (1.168-26.19) and 3.736 (1.446-9.652), respectively. These results confirm that there is an association between DLA class II haplotype and greyhound meningoencephalitis, suggesting an immunogenetic risk factor for the development of the disease. Greyhound meningoencephalitis may be a suitable model for human neuroinflammatory diseases with an immunogenetic component.
Collapse
Affiliation(s)
- R E Shiel
- Section of Veterinary Clinical Studies, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
5
|
Qeska V, Baumgärtner W, Beineke A. Species-specific properties and translational aspects of canine dendritic cells. Vet Immunol Immunopathol 2013; 151:181-92. [DOI: 10.1016/j.vetimm.2012.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022]
|
6
|
Spitzbarth I, Baumgärtner W, Beineke A. The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 2012; 147:6-24. [PMID: 22542984 DOI: 10.1016/j.vetimm.2012.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Dogs are comparatively frequently affected by various spontaneously occurring inflammatory and degenerative central nervous system (CNS) conditions, and immunopathological processes are a hallmark of the associated neuropathology. Due to the low regenerative capacity of the CNS a sophisticated understanding of the underlying molecular basis for disease initiation, progression and remission in canine CNS diseases represents a prerequisite for the development of novel therapeutical approaches. In addition, as many spontaneous canine CNS diseases share striking similarities with their human counterpart, knowledge about the immune pathogenesis may in part be translated for a better understanding of certain human diseases. In addition to cytokine-driven differentiation of peripheral leukocytes including different subsets of T cells recent research suggests a pivotal role of these mediators also in phenotype polarization of resident glial cells. Cytokines thus represent the key mediators of the local and systemic immune response in CNS diseases and their orchestration significantly decides on either lesion progression or remission. The aim of the present review is to summarize the growing number of data focusing on the molecular basis of the immune response during spontaneous canine CNS diseases and to detail the effect of cytokines on the immune pathogenesis of selected idiopathic, infectious, and traumatic canine CNS diseases. Steroid-responsive meningitis arteritis (SRMA) represents a unique idiopathic disease of leptomeningeal blood vessels characterized by excessive IgA secretion into the cerebrospinal fluid. Recent reports have given sophisticated insights into the cytokine-driven, immune-mediated pathogenesis of SRMA that is characterized by a biased T helper 2 cell response. Canine distemper associated leukoencephalitis represents an important spontaneously occurring disease that allows investigations on the basic pathogenesis of immune-mediated myelin loss. It is characterized by an early virus-induced up-regulation of pro-inflammatory cytokines with chronic bystander immune-mediated demyelinating processes. Lastly, canine spinal cord injury (SCI) shares many similarities with the human counterpart and most commonly results from intervertebral disk disease. The knowledge of its pathogenesis is largely restricted to experimental studies in rodents, and the impact of immune processes that accompany secondary injury is discussed controversially. Recent investigations on canine SCI highlight the pivotal role of pro-inflammatory cytokine expression that is paralleled by a dominating reaction of microglia/macrophages potentially indicating a polarization of these immune cells into a neurotoxic and harmful phenotype. This report will review the role of cytokines in the immune processes of the mentioned representative canine CNS diseases and highlight the importance of cytokine/cytokine interaction as a useful therapeutic target in canine CNS diseases.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
7
|
Shiel RE, Mooney CT, Brennan SF, Nolan CM, Callanan JJ. Clinical and clinicopathological features of non-suppurative meningoencephalitis in young greyhounds in Ireland. Vet Rec 2010; 167:333-7. [PMID: 20802187 DOI: 10.1136/vr.c4248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The clinical and clinicopathological features of non-suppurative meningoencephalitis in 30 greyhounds were reviewed. The dogs were from 21 separate litters, comprised both sexes (16 males and 14 females) and ranged in age from five to 18 months. In 14 (66.7 per cent) litters, more than one case was suspected or confirmed, and the number of siblings affected within individual litters ranged from one to seven. Clinical signs were progressive and varied from five days to 12 months in duration; 12 dogs had signs of two weeks' duration or less. The rate of progression of signs was variable. Common features included dullness or lethargy (22), altered behaviour (21), proprioceptive and postural reaction deficits (18), circling (17), ataxia (17), decreased appetite (15) and weight loss (13). No consistent haematological or biochemical abnormalities were identified and serology failed to implicate Toxoplasma gondii or Neospora caninum. Cerebrospinal fluid analysis revealed mild or moderate mononuclear pleocytosis in 12 (70.6 per cent) of 17 dogs. No definitive antemortem diagnosis could be made in any affected dog.
Collapse
Affiliation(s)
- R E Shiel
- Section of Veterinary Clinical Studies, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|