1
|
Henry ML, Velez-Irizarry D, Pagan JD, Sordillo L, Gandy J, Valberg SJ. The Impact of N-Acetyl Cysteine and Coenzyme Q10 Supplementation on Skeletal Muscle Antioxidants and Proteome in Fit Thoroughbred Horses. Antioxidants (Basel) 2021; 10:antiox10111739. [PMID: 34829610 PMCID: PMC8615093 DOI: 10.3390/antiox10111739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Horses have one of the highest skeletal muscle oxidative capacities amongst mammals, which, combined with a high glycolytic capacity, could perturb redox status during maximal exercise. We determined the effect of 30 d of oral coenzyme Q10 and N-acetyl-cysteine supplementation (NACQ) on muscle glutathione (GSH), cysteine, ROS, and coenzyme Q10 concentrations, and the muscle proteome, in seven maximally exercising Thoroughbred horses using a placebo and randomized cross-over design. Gluteal muscle biopsies were obtained the day before and 1 h after maximal exercise. Concentrations of GSH, cysteine, coenzyme Q10, and ROS were measured, and citrate synthase, glutathione peroxidase, and superoxide dismutase activities analyzed. GSH increased significantly 1 h post-exercise in the NACQ group (p = 0.022), whereas other antioxidant concentrations/activities were unchanged. TMT proteomic analysis revealed 40 differentially expressed proteins with NACQ out of 387 identified, including upregulation of 13 mitochondrial proteins (TCA cycle and NADPH production), 4 Z-disc proteins, and down regulation of 9 glycolytic proteins. NACQ supplementation significantly impacted muscle redox capacity after intense exercise by enhancing muscle glutathione concentrations and increasing expression of proteins involved in the uptake of glutathione into mitochondria and the NAPDH-associated reduction of oxidized glutathione, without any evident detrimental effects on performance.
Collapse
Affiliation(s)
- Marisa L. Henry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
- Correspondence:
| | - Deborah Velez-Irizarry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Joe D. Pagan
- Kentucky Equine Research, Versailles, KY 40383, USA;
| | - Lorraine Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Stephanie J. Valberg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| |
Collapse
|
2
|
In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy. Life (Basel) 2021; 11:life11070719. [PMID: 34357091 PMCID: PMC8307747 DOI: 10.3390/life11070719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Equine atypical myopathy is a seasonal intoxication of grazing equids. In Europe, this poisoning is associated with the ingestion of toxins contained in the seeds and seedlings of the sycamore maple (Acer pseudoplatanus). The toxins involved in atypical myopathy are known to inhibit ß-oxidation of fatty acids and induce a general decrease in mitochondrial respiration, as determined by high-resolution respirometry applied to muscle samples taken from cases of atypical myopathy. The severe impairment of mitochondrial bioenergetics induced by the toxins may explain the high rate of mortality observed: about 74% of horses with atypical myopathy die, most within the first two days of signs of poisoning. The mechanism of toxicity is not completely elucidated yet. To improve our understanding of the pathological process and to assess therapeutic candidates, we designed in vitro assays using equine skeletal myoblasts cultured from muscle biopsies and subjected to toxins involved in atypical myopathy. We established that equine primary myoblasts do respond to one of the toxins incriminated in the disease.
Collapse
|
3
|
McKenzie E. Current status of myopathies affecting athletic horses. COMPARATIVE EXERCISE PHYSIOLOGY 2017. [DOI: 10.3920/cep170005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Muscular disorders rank among the most prevalent problems of horses competing in a broad variety of athletic disciplines, including track racing, dressage, endurance racing and Western riding disciplines. As described in this review, active scientific investigation is continuing to elucidate the different mechanisms underlying specific muscular disorders in horses, and is discovering and defining new disorders, and new methods of diagnosis, treatment and management. The flourishing field of equine rehabilitation and regenerative medicine is also driving the progressive application of a variety of modalities to the treatment and management of musculoskeletal conditions in horses. However, it is essential that this be accompanied by appropriate scientific investigation to verify the efficacy of recommended modalities and treatment protocols.
Collapse
Affiliation(s)
- E. McKenzie
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, 227 Magruder Hall, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
From skeletal muscle to stem cells: an innovative and minimally-invasive process for multiple species. Sci Rep 2017; 7:696. [PMID: 28386120 PMCID: PMC5429713 DOI: 10.1038/s41598-017-00803-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow and adipose tissue represent the two most commonly exploited sources of adult mesenchymal stem cells for musculoskeletal applications. Unfortunately the sampling of bone marrow and fat tissue is invasive and does not always lead to a sufficient number of cells. The present study describes a novel sampling method based on microbiopsy of skeletal muscle in man, pigs, dogs and horses. The process includes explant of the sample, Percoll density gradient for isolation and subsequent culture of the cells. We further characterized the cells and identified their clonogenic and immunomodulatory capacities, their immune-phenotyping behavior and their capability to differentiate into chondroblasts, osteoblasts and adipocytes. In conclusion, this report describes a novel and easy-to-use technique of skeletal muscle-derived mesenchymal stem cell harvest, culture, characterization. This technique is transposable to a multitude of different animal species.
Collapse
|
5
|
Lemieux H, Boemer F, van Galen G, Serteyn D, Amory H, Baise E, Cassart D, van Loon G, Marcillaud-Pitel C, Votion DM. Mitochondrial function is altered in horse atypical myopathy. Mitochondrion 2016; 30:35-41. [PMID: 27374763 DOI: 10.1016/j.mito.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/30/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
Abstract
Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - François Boemer
- Biochemical Genetics Laboratory, Human Genetics, CHU Liege, University of Liege, Belgium
| | - Gaby van Galen
- (c)Equine Clinic, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Didier Serteyn
- (c)Equine Clinic, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium; Centre of Oxygen, Research and Development, University of Liege, Liege, Belgium
| | - Hélène Amory
- (c)Equine Clinic, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Etienne Baise
- (e)Department of Animal Productions: Biostatistics, Economy and Animal Selection, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium
| | - Dominique Cassart
- Department of Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium
| | | | | | - Dominique-M Votion
- (i)Equine Pole, Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Belgium.
| |
Collapse
|
6
|
Naylor RJ, Piercy RJ. Development of a clonal equine myoblast cell line capable of terminal differentiation into mature myotubes in vitro. Am J Vet Res 2016; 76:608-14. [PMID: 26111090 DOI: 10.2460/ajvr.76.7.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To produce a clonal equine myoblast cell line that retains the ability to divide for multiple passages and differentiate into multinucleated myotubes during specific conditions. SAMPLE Cultured primary equine skeletal muscle-derived cells from a healthy Thoroughbred. PROCEDURES Cell cultures were transfected by electroporation with a plasmid (pNIT) that expresses the temperature-sensitive simian vacuolating virus 40 large T antigen (TAg), which can be controlled by a doxycycline-responsive promoter. Cells that stably integrated the TAg were selected and expanded to passage 25. For each passage, differentiation and fusion properties of the cells were determined and immunocytochemical analyses were performed to evaluate expression of TAg and other muscle-specific proteins. Optimum conditions that led to cell differentiation into myotubes were also determined. RESULTS Compared with nontransfected control cells, myogenic, desmin-positive cells expressed the TAg when incubated at 33°C and could be maintained in culture for numerous passages. Reduced expression of TAg was identified in cells incubated at 37°C or when incubated with doxycycline at 33°C. Expression of TAg was not detected when cells were incubated with doxycycline at 37°C, and when serum was withdrawn from the culture medium, those clones differentiated into a pure population of multinucleated myotubes. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that production of an immortalized clonal equine skeletal muscle cell line was possible. A clonal equine skeletal muscle cell line will be a valuable in vitro tool for use in equine physiology and disease research.
Collapse
|
7
|
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Deby-Dupont GP, Derochette S, Serteyn DA. Effect of different kinds of anoxia/reoxygenation on the mitochondrial function and the free radicals production of cultured primary equine skeletal myoblasts. Res Vet Sci 2013; 95:870-8. [PMID: 24099743 DOI: 10.1016/j.rvsc.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Horses are outstanding athletes, performing in many different disciplines involving different kinds of efforts and metabolic responses. Depending on exercise intensity, their skeletal muscle oxygenation decreases, and the reperfusion at cessation of the exercise can cause excessive production of free radicals. This study on cultured primary equine myoblasts investigated the effect of different kinds of anoxia/reoxygenation (A/R) on routine respiration, mitochondrial complex I specific activity and free radicals production. Our data revealed that short cycles of A/R caused a decrease of all the parameters, opposite to what a single long period of anoxia did. A preconditioning-like effect could explain our first pattern of results whereas mild uncoupling could be more appropriate for the second one. Anyway, it seems that mitochondrial complex I could play a major role in the regulation of the balance between metabolic and antioxidant protection of the muscular function of athletic horses.
Collapse
Affiliation(s)
- Justine D Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry B6a, University of Liège, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Derochette S, Vanderplasschen A, Deby-Dupont GP, Serteyn DA. Effect of myeloperoxidase and anoxia/reoxygenation on mitochondrial respiratory function of cultured primary equine skeletal myoblasts. Mitochondrion 2013; 13:410-6. [DOI: 10.1016/j.mito.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
9
|
Serteyn D, Caudron I, Lejeune JP, Votion D, Ceusters J, Franck T, Sandersen C. Relationship between exercise-induced systemic inflammatory like reaction and racing performance in endurance horses. COMPARATIVE EXERCISE PHYSIOLOGY 2012. [DOI: 10.3920/cep12026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endurance race induces a rise of serum creatine kinase (CK) activity and a systemic inflammatory like response characterised by an increase of neutrophil counts, plasma and muscle myeloperoxidase (MPO) and elastase (ELT) concentrations in horses. Horses performing the same standardised exercise test do not respond with the same magnitude of inflammatory reaction. The aim of the present study was to measure the total neutrophil count, the ratio neutrophil:lymphocyte, the MPO and ELT plasma concentrations and concomitant increases of serum CK activities in competing endurance horse and to relate these results to their race performance. Twenty one horses participating in a 120 km 4 star endurance race recruited on a voluntary basis finished the race with a mean speed ranging from 13.1 to 19.8 km/h. Blood was taken the day before the race and two hours after the race. Mean values of neutrophil counts, ratio neutrophil:lymphocyte, plasma MPO and ELT concentrations and serum CK activities after the race were significantly higher than the pre-race values. There was no correlation between neutrophil counts, MPO, ELT or CK and the mean speed of the horses during the race except for the ratio neutrophil:lymphocyte where a significant negative correlation was observed. These results showed that systemic responses induced by strenuous exercise such as an endurance race is not clearly related to performance but also to horse-related factors, such as intrinsic capacity or training.
Collapse
Affiliation(s)
- D. Serteyn
- Department of Clinical Sciences, Equine Clinic, Faculty of Veterinary Medicine, University of Liege, Blvd de Colonster 20 B41, 4000 Liege, Belgium
- Mont-le-Soie Equine Research Centre, Mont-le-Soie 1, 6690 Vielsalm, Belgium
- Center for Oxygen Research and Development, University of Liege, B6, 4000 Liege, Belgium
| | - I. Caudron
- Mont-le-Soie Equine Research Centre, Mont-le-Soie 1, 6690 Vielsalm, Belgium
| | - J.-P. Lejeune
- Department of Clinical Sciences, Equine Clinic, Faculty of Veterinary Medicine, University of Liege, Blvd de Colonster 20 B41, 4000 Liege, Belgium
- Mont-le-Soie Equine Research Centre, Mont-le-Soie 1, 6690 Vielsalm, Belgium
| | - D. Votion
- Department of Clinical Sciences, Equine Clinic, Faculty of Veterinary Medicine, University of Liege, Blvd de Colonster 20 B41, 4000 Liege, Belgium
- Mont-le-Soie Equine Research Centre, Mont-le-Soie 1, 6690 Vielsalm, Belgium
| | - J. Ceusters
- Center for Oxygen Research and Development, University of Liege, B6, 4000 Liege, Belgium
| | - T. Franck
- Center for Oxygen Research and Development, University of Liege, B6, 4000 Liege, Belgium
| | - C. Sandersen
- Department of Clinical Sciences, Equine Clinic, Faculty of Veterinary Medicine, University of Liege, Blvd de Colonster 20 B41, 4000 Liege, Belgium
| |
Collapse
|