1
|
Park SA, Komáromy AM. Biomechanics of the optic nerve head and sclera in canine glaucoma: A brief review. Vet Ophthalmol 2021; 24:316-325. [PMID: 34402566 DOI: 10.1111/vop.12923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/04/2021] [Accepted: 07/25/2021] [Indexed: 01/17/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness, a progressive optic neuropathy with retinal ganglion cell (RGC) death beginning in the optic nerve head (ONH). A primary risk factor for developing glaucoma is elevated intraocular pressure (IOP). Reducing IOP is the only treatment proven to be effective at delaying disease progression. Nevertheless, even when patients have their IOP reduced, the majority of them continue to lose vision. There are, in both humans and dogs, significant interindividual variabilities in susceptibilities to IOP-induced optic nerve damage. Vision loss progresses much more slowly in Beagles with open-angle glaucoma (OAG) caused by ADAMTS10 mutation. This can be attributed to the mutation-related altered ocular biomechanical properties. The principal site of optic nerve (ON) damage in glaucoma is the ONH. It is suggested that the biomechanical properties of the ONH and the surrounding peripapillary sclera (PPS) contribute to glaucoma development and progression. As far as the beneficial biomechanical properties of the ONH and PPS for a decreased susceptibility and slow progression of glaucoma, data are inconsistent and conflicting. Recent biomechanical studies on beagles with ADAMTS10 mutation demonstrated that the mutant dogs have mechanically weak posterior sclera. This weakness was associated with a reduced collagen density and a lower proportion of insoluble collagen. These changes, observed before glaucoma development, were considered intrinsic characteristics caused by the mutation rather than a secondary effect of IOP elevation. Further studies of ADAMTS10-OAG may elucidate the effects of altered biomechanical properties of ONH and PPS in determining the glaucoma progression.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Plummer CE, Bras D, Grozdanic S, Komáromy AM, McLellan G, Miller P, Sapienza JS, Teixeira L, Webb T. Prophylactic anti-glaucoma therapy in dogs with primary glaucoma: A practitioner survey of current medical protocols. Vet Ophthalmol 2020; 24 Suppl 1:96-108. [PMID: 32920915 DOI: 10.1111/vop.12820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
AIM To examine the use of prophylactic anti-glaucoma medications in the normotensive fellow eye in dogs with unilateral overt primary glaucoma by veterinary ophthalmology clinicians. METHODS A survey of veterinary ophthalmology clinicians was distributed over two international list serves servicing veterinary ophthalmologists, trainees, and individuals whose practice consisted primarily of ophthalmic patients. The survey was developed following analysis of historical and currently available medical options for control of intraocular pressure and for neuroprotection. RESULTS Responses from 199 veterinary ophthalmology clinicians were evaluated. While a large variety of topical anti-hypertensive drugs and protocols were used, the most commonly used medications were aqueous humor production suppressors such as dorzolamide 2.0% ophthalmic solution, timolol 0.5% ophthalmic solution, and a combination product containing both drugs. Latanoprost 0.005% ophthalmic solution was used infrequently for prophylaxis by comparison. The majority of respondents do not use concurrent anti-inflammatory medications (61.22%), although a sizeable minority used prednisolone acetate, dexamethasone, or ketorolac as prophylactic treatment. Systemically administered ocular anti-hypertensive agents were rarely used. Only 40% of respondents used neuroprotectant agents; the most commonly prescribed were the calcium channel blocker amlodipine and the nutraceutical Ocu-Glo™. Recommended intervals between re-examination by the clinician ranged from one month to one year, with most re-evaluations occurring every 3 to 6 months. The majority of respondents recommended more frequent assessments of IOP at intervals between once monthly and once every 3 months. CONCLUSIONS Data analysis of medical therapy for the normotensive fellow eye of dogs previously diagnosed with primary glaucoma suggests that there is a great need for well-designed, prospective, controlled, multi-center studies to determine which protocols have the greatest efficacy in delaying an overt attack in the previously normotensive eye in dogs with a genetic predisposition to glaucoma. Prospective studies utilizing a carbonic anhydrase inhibitor such as dorzolamide and a prostaglandin analogue such as latanoprost would be reasonable as these two drugs are widely used in the treatment of overt glaucoma and would allow for an exploration of the impact of different mechanisms of action of lowering IOP on the pathophysiology of primary glaucoma.
Collapse
Affiliation(s)
- Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, PR, USA
| | | | - András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Gillian McLellan
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Leandro Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Terah Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, OH, USA
| |
Collapse
|
4
|
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L, Miller PE, Moroi SE, Plummer CE, Sapienza JS, Storey ES, Teixeira LB, Toris CB, Webb TR. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22:726-740. [PMID: 31106969 PMCID: PMC6744300 DOI: 10.1111/vop.12678] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO-VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP-lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
Collapse
Affiliation(s)
- András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, Puerto Rico
| | | | | | | | - Larry Kagemann
- U.S. Food and Drug Administration, Silver Spring, Maryland.,New York University School of Medicine, New York, New York.,Department of Ophthalmology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sayoko E Moroi
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Eric S Storey
- South Atlanta Veterinary Emergency & Specialty, Fayetteville, Georgia
| | - Leandro B Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol B Toris
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terah R Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, Ohio
| |
Collapse
|
5
|
Oliver JA, Ricketts SL, Kuehn MH, Mellersh CS. Primary closed angle glaucoma in the Basset Hound: Genetic investigations using genome-wide association and RNA sequencing strategies. Mol Vis 2019; 25:93-105. [PMID: 30820145 PMCID: PMC6377385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/06/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the genetic basis of primary closed angle glaucoma (PCAG) in European Basset Hounds using genome-wide association and RNA sequencing strategies. Methods DNA samples from 119 European Basset Hounds were genotyped on the 170 K SNP CanineHD BeadChip array (Illumina) comprising 37 with normal iridocorneal angles (controls), 57 with pectinate ligament abnormality (PLA cases), and 25 with PCAG (PCAG cases). Genome-wide association studies (GWASs) of the PLA and PCAG cases were conducted. Whole transcriptome sequences of iridocorneal angle tissues from five Basset Hounds with PCAG were compared with those from four dogs with normal eyes to investigate differences in gene expression between the affected and unaffected eyes in GWAS-associated loci. A variant in NEB, previously reported to be associated with PCAG in American Basset Hounds, was genotyped in cohorts of European Basset Hounds and non-Basset Hounds. Results The GWASs revealed 1.4 and 0.2 Mb regions, on chromosomes 24 and 37, respectively, that are statistically associated with PCAG. The former locus has previously been associated with glaucoma in humans. Whole transcriptome analysis revealed differential gene expression of eight genes within these two loci. The NEB variant was not associated with PLA or PCAG in this set of European Basset Hounds. Conclusions We identified two novel loci for canine PCAG. Further investigation is required to elucidate candidate variants that underlie canine PCAG.
Collapse
Affiliation(s)
- James A.C. Oliver
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Markus H. Kuehn
- The University of Iowa, Department of Ophthalmology and Visual Sciences, Iowa City, IO
| | - Cathryn S. Mellersh
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
6
|
Abstract
In many health-related fields, there is great interest in the identification of biomarkers that distinguish diseased from healthy individuals. In addition to identifying the diseased state, biomarkers have potential use in predicting disease risk, monitoring disease progression, evaluating treatment efficacy, and informing pathogenesis. This review details the genetic and biochemical markers associated with canine primary glaucoma. While there are numerous molecular markers (biochemical and genetic) associated with glaucoma in dogs, there is no ideal biomarker that allows early diagnosis and/or identification of disease progression. Genetic mutations associated with canine glaucoma include those affecting ADAMTS10, ADAMTS17, Myocilin, Nebulin, COL1A2, RAB22A, and SRBD1. With the exception of Myocilin, there is very limited crossover in genetic biomarkers identified between human and canine glaucomas. Mutations associated with canine glaucoma vary between and within canine breeds, and gene discoveries therefore have limited overall effects as a screening tool in the general canine population. Biochemical markers of glaucoma include indicators of inflammation, oxidative stress, serum autoantibodies, matrix metalloproteinases, tumor necrosis factor–α, and transforming growth factor–β. These markers include those that indicate an adaptive or protective response, as well as those that reflect the damage arising from oxidative stress.
Collapse
Affiliation(s)
- K. L. Graham
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - C. McCowan
- Department of Pathology, Faculty of Veterinary Science, University of Melbourne, Parkville, Australia
- Department of Economic Development, Jobs, Transport and Resources, Victoria, Australia
| | - A. White
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|