1
|
Byrne AW, Barrett D, Breslin P, Fanning J, Casey M, Madden JM, Lesellier S, Gormley E. Bovine tuberculosis in youngstock cattle: A narrative review. Front Vet Sci 2022; 9:1000124. [PMID: 36213413 PMCID: PMC9540495 DOI: 10.3389/fvets.2022.1000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, remains a high-priority global pathogen of concern. The role of youngstock animals in the epidemiology of bTB has not been a focus of contemporary research. Here we have aimed to collate and summarize what is known about the susceptibility, diagnosis, transmission (infectiousness), and epidemiology to M. bovis in youngstock (up to 1-year of age). Youngstock are susceptible to M. bovis infection when exposed, with the capacity to develop typical bTB lesions. Calves can be exposed through similar routes as adults, via residual infection, contiguous neighborhood spread, wildlife spillback infection, and the buying-in of infected but undetected cattle. Dairy systems may lead to greater exposure risk to calves relative to other production systems, for example, via pooled milk. Given their young age, calves tend to have shorter bTB at-risk exposure periods than older cohorts. The detection of bTB varies with age when using a wide range of ante-mortem diagnostics, also with post-mortem examination and confirmation (histological and bacteriological) of infection. When recorded as positive by ante-mortem test, youngstock appear to have the highest probabilities of any age cohort for confirmation of infection post-mortem. They also appear to have the lowest false negative bTB detection risk. In some countries, many calves are moved to other herds for rearing, potentially increasing inter-herd transmission risk. Mathematical models suggest that calves may also experience lower force of infection (the rate that susceptible animals become infected). There are few modeling studies investigating the role of calves in the spread and maintenance of infection across herd networks. One study found that calves, without operating testing and control measures, can help to maintain infection and lengthen the time to outbreak eradication. Policies to reduce testing for youngstock could lead to infected calves remaining undetected and increasing onwards transmission. Further studies are required to assess the risk associated with changes to testing policy for youngstock in terms of the impact for within-herd disease control, and how this may affect the transmission and persistence of infection across a network of linked herds.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- *Correspondence: Andrew W. Byrne ;
| | - Damien Barrett
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Philip Breslin
- ERAD, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - June Fanning
- One-Health and Welfare Scientific Support Unit, National Disease Control Centre, Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Jamie M. Madden
- Centre for Veterinary Epidemiology and Risk Analysis (CVERA), School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife (LRFSN), ANSES, Technopole Agricole et Vétérinaire, Malzéville, France
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Laboratory, School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
2
|
Genome Sequences of Mycobacterium tuberculosis Biovar bovis Strains Ravenel and 10-7428. Microbiol Resour Announc 2021; 10:e0041121. [PMID: 34137637 PMCID: PMC8210702 DOI: 10.1128/mra.00411-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genomes of two Mycobacterium tuberculosis biovar bovis strains. Strain Ravenel was isolated in the 1900s and has been shown to be attenuated in cattle. Strain 10-7428 is considered highly pathogenic in cattle and was isolated from a bovine tuberculosis outbreak.
Collapse
|
3
|
Wiarda JE, Boggiatto PM, Bayles DO, Waters WR, Thacker TC, Palmer MV. Severity of bovine tuberculosis is associated with innate immune-biased transcriptional signatures of whole blood in early weeks after experimental Mycobacterium bovis infection. PLoS One 2020; 15:e0239938. [PMID: 33166313 PMCID: PMC7652326 DOI: 10.1371/journal.pone.0239938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis, is a pathogen that impacts both animal and human health. Consequently, there is a need to improve understanding of disease dynamics, identification of infected animals, and characterization of the basis of immune protection. This study assessed the transcriptional changes occurring in cattle during the early weeks following a M. bovis infection. RNA-seq analysis of whole blood-cell transcriptomes revealed two distinct transcriptional clusters of infected cattle at both 4- and 10-weeks post-infection that correlated with disease severity. Cattle exhibiting more severe disease were transcriptionally divergent from uninfected animals. At 4-weeks post-infection, 25 genes had commonly increased expression in infected cattle compared to uninfected cattle regardless of disease severity. Ten weeks post-infection, differential gene expression was only observed when severely-affected cattle were compared to uninfected cattle. This indicates a transcriptional divergence based on clinical status following infection. In cattle with more severe disease, biological processes and cell type enrichment analyses revealed overrepresentation of innate immune-related processes and cell types in infected animals. Collectively, our findings demonstrate two distinct transcriptional profiles occur in cattle following M. bovis infection, which correlate to clinical status.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
- Immunobiology Graduate Program, Iowa State University, Ames, IA, United States of America
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States of America
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - W. Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Tyler C. Thacker
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| |
Collapse
|
4
|
Orloski K, Robbe-Austerman S, Stuber T, Hench B, Schoenbaum M. Whole Genome Sequencing of Mycobacterium bovis Isolated From Livestock in the United States, 1989-2018. Front Vet Sci 2018; 5:253. [PMID: 30425994 PMCID: PMC6219248 DOI: 10.3389/fvets.2018.00253] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
The United States official bovine tuberculosis (bTB) eradication program has utilized genotyping for Mycobacterium bovis isolates since 2000 and whole genome sequencing was implemented in 2013. The program has been highly successful, yet as bTB prevalence has reached historic lows, a small number of new bTB-affected cattle herds occur annually. Therefore, understanding the epidemiology of bTB transmission is critically important, in order to target limited resources for surveillance and achieve eradication. This evaluation described the diversity and epidemiology of M. bovis isolates identified in the USA livestock. Isolates from animals within the bTB endemic area of Michigan were excluded. Broad diversity was found among 1,248 isolates, collected from affected cattle and farmed cervids herds and fed cattle during 1989–2018. Nearly 70% of isolates from 109 herds/cases during 1999–2018 were European clonal complex 1 and 30% were European clonal complex 2. The sources of infection based on the herd investigation were known for 41% of herds/cases and 59% were not epidemiologically linked to another USA origin herd. Whole genome sequencing results were consistent with the investigation findings and previously unrecognized links between herds and cases were disclosed. For herds/cases with an unknown source of infection, WGS results suggested several possible sources, including undocumented cattle movement, imported cattle and humans. The use of WGS in new cases has reduced the time and costs associated with epidemiological investigations. Within herd SNP diversity was evaluated by examining 18 herds with 10 or more isolates sequenced. Forty percent of isolates had not diverged or accumulated any SNPs, and 86% of the isolates had accumulated 3 or fewer SNPs. The results of WGS does not support a bTB reservoir in USA cattle. The bTB eradication program appears to be highly effective as the majority of herds/cases in the USA are unique strains with limited herd to herd transmission.
Collapse
Affiliation(s)
- Kathy Orloski
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Tod Stuber
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Ames, IA, United States
| | - Bill Hench
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, United States
| | - Mark Schoenbaum
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, United States
| |
Collapse
|
5
|
Bruning-Fann CS, Robbe-Austerman S, Kaneene JB, Thomsen BV, Tilden JD, Ray JS, Smith RW, Fitzgerald SD, Bolin SR, O'Brien DJ, Mullaney TP, Stuber TP, Averill JJ, Marks D. Use of whole-genome sequencing and evaluation of the apparent sensitivity and specificity of antemortem tuberculosis tests in the investigation of an unusual outbreak of Mycobacterium bovis infection in a Michigan dairy herd. J Am Vet Med Assoc 2017; 251:206-216. [PMID: 28671497 DOI: 10.2460/javma.251.2.206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe use of whole-genome sequencing (WGS) and evaluate the apparent sensitivity and specificity of antemortem tuberculosis tests during investigation of an unusual outbreak of Mycobacterium bovis infection in a Michigan dairy herd. DESIGN Bovine tuberculosis (bTB) outbreak investigation. ANIMALS Cattle, cats, dog, and wildlife. PROCEDURES All cattle in the index dairy herd were screened for bTB with the caudal fold test (CFT), and cattle ≥ 6 months old were also screened with a γ-interferon (γIFN) assay. The index herd was depopulated along with all barn cats and a dog that were fed unpasteurized milk from the herd. Select isolates from M bovis-infected animals from the index herd and other bTB-affected herds underwent WGS. Wildlife around all affected premises was examined for bTB. RESULTS No evidence of bTB was found in any wildlife examined. Within the index herd, 53 of 451 (11.8%) cattle and 12 of 21 (57%) cats were confirmed to be infected with M bovis. Prevalence of M bovis-infected cattle was greatest among 4- to 7-month-old calves (16/49 [33%]) followed by adult cows (36/203 [18%]). The apparent sensitivity and specificity were 86.8% and 92.7% for the CFT and 80.4% and 96.5% for the γIFN assay when results for those tests were interpreted separately and 96.1% and 91.7% when results were interpreted in parallel. Results of WGS revealed that M bovis-infected barn cats and cattle from the index herd and 6 beef operations were infected with the same strain of M bovis. Of the 6 bTB-affected beef operations identified during the investigation, 3 were linked to the index herd only by WGS results; there was no record of movement of livestock or waste milk from the index herd to those operations. CONCLUSIONS AND CLINICAL RELEVANCE Whole-genome sequencing enhanced the epidemiological investigation and should be used in all disease investigations. Performing the CFT and γIFN assay in parallel improved the antemortem ability to detect M bovis-infected animals. Contact with M bovis-infected cattle and contaminated milk were major risk factors for transmission of bTB within and between herds of this outbreak.
Collapse
|
6
|
Waters WR, Maggioli MF, Palmer MV, Thacker TC, McGill JL, Vordermeier HM, Berney-Meyer L, Jacobs WR, Larsen MH. Interleukin-17A as a Biomarker for Bovine Tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:168-80. [PMID: 26677202 PMCID: PMC4744917 DOI: 10.1128/cvi.00637-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022]
Abstract
T helper 17 (Th17)-associated cytokines are integral to the immune responses to tuberculosis, initiating both protective and harmful inflammatory responses. The aim of the present study was to evaluate applied aspects of interleukin-17 (IL-17) biology in the context of Mycobacterium bovis infection of cattle. Using transcriptome sequencing (RNA-Seq), numerous Th17-associated cytokine genes (including IL-17A, IL-17F, IL-22, IL-19, and IL-27) were upregulated >9-fold in response to purified protein derivative stimulation of peripheral blood mononuclear cells from experimentally M. bovis-infected cattle. Protective vaccines elicited IL-17A, IL-17F, IL-22, and IL-27 responses. Reduced IL-17A responses by vaccine recipients, compared to nonvaccinated animals, at 2.5 weeks after M. bovis challenge correlated with reduced disease burdens. Additionally, IL-17A and interferon gamma (IFN-γ) responses were highly correlated and exhibited similar diagnostic capacities. The present findings support the use of Th17-associated cytokines as biomarkers of infection and protection in the immune responses to bovine tuberculosis.
Collapse
Affiliation(s)
- W Ray Waters
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Mayara F Maggioli
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Mitchell V Palmer
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Tyler C Thacker
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Linda Berney-Meyer
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, USA
| | - William R Jacobs
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, USA
| | - Michelle H Larsen
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, USA
| |
Collapse
|
7
|
Palmer MV, Thacker TC, Waters WR. Analysis of Cytokine Gene Expression using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of Cattle Infected Experimentally by Aerosolized Mycobacterium bovis. J Comp Pathol 2015; 153:150-9. [PMID: 26189773 DOI: 10.1016/j.jcpa.2015.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/03/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023]
Abstract
Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
Collapse
Affiliation(s)
- M V Palmer
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, USA.
| | - T C Thacker
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, USA
| | - W R Waters
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Avenue, Ames, IA, USA
| |
Collapse
|
8
|
Stahl RS, Ellis CK, Nol P, Waters WR, Palmer M, VerCauteren KC. Fecal Volatile Organic Ccompound Profiles from White-Tailed Deer (Odocoileus virginianus) as Indicators of Mycobacterium bovis Exposure or Mycobacterium bovis Bacille Calmette-Guerin (BCG) Vaccination. PLoS One 2015; 10:e0129740. [PMID: 26060998 PMCID: PMC4465024 DOI: 10.1371/journal.pone.0129740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/12/2015] [Indexed: 12/27/2022] Open
Abstract
White-tailed deer (Odocoileus virginianus) serve as a reservoir for bovine tuberculosis, caused by Mycobacterium bovis, and can be a source of infection in cattle. Vaccination with M. bovis Bacille Calmette Guerin (BCG) is being considered for management of bovine tuberculosis in deer. Presently, no method exists to non-invasively monitor the presence of bovine tuberculosis in deer. In this study, volatile organic compound profiles of BCG-vaccinated and non-vaccinated deer, before and after experimental challenge with M. bovis strain 95–1315, were generated using solid phase microextraction fiber head-space sampling over suspended fecal pellets with analysis by gas chromatography/mass spectrometry. Chromatograms were processed using XCMS Online to characterize ion variation among treatment groups. The principal component scores resulting from significant (α = 0.05) ion responses were used to build linear discriminant analysis models. The sensitivity and specificity of these models were used to evaluate the feasibility of using this analytical approach to distinguish within group comparisons between pre- and post-M. bovis challenge: non-vaccinated male or female deer, BCG-vaccinated male deer, and the mixed gender non-vaccinated deer data. Seventeen compounds were identified in this analysis. The peak areas for these compounds were used to build a linear discriminant classification model based on principal component analysis scores to evaluate the feasibility of discriminating between fecal samples from M. bovis challenged deer, irrespective of vaccination status. The model best representing the data had a sensitivity of 78.6% and a specificity of 91.4%. The fecal head-space sampling approach presented in this pilot study provides a non-invasive method to discriminate between M. bovis challenged deer and BCG-vaccinated deer. Additionally, the technique may prove invaluable for BCG efficacy studies with free-ranging deer as well as for use as a non-invasive monitoring system for the detection of tuberculosis in captive deer and other livestock.
Collapse
Affiliation(s)
- Randal S. Stahl
- United States Department of Agriculture (USDA)-Animal and Plant Health Inspection Service (APHIS)-Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Christine K. Ellis
- United States Department of Agriculture (USDA)-Animal and Plant Health Inspection Service (APHIS)-Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Pauline Nol
- Wildlife Livestock Disease Investigations Team, USDA-APHIS-Veterinary Services-Science, Technology, and Analysis Services, National Veterinary Services Laboratory, Fort Collins, Colorado, United States of America
| | - W. Ray Waters
- Infectious Bacterial Diseases Research Unit, USDA-Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Mitchell Palmer
- Infectious Bacterial Diseases Research Unit, USDA-Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Kurt C. VerCauteren
- United States Department of Agriculture (USDA)-Animal and Plant Health Inspection Service (APHIS)-Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
9
|
Effects of Serial Skin Testing with Purified Protein Derivative on the Level and Quality of Antibodies to Complex and Defined Antigens in Mycobacterium bovis-Infected Cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:641-9. [PMID: 25855555 DOI: 10.1128/cvi.00119-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/03/2015] [Indexed: 01/29/2023]
Abstract
Several serological tests designed to detect antibodies to immunodominant Mycobacterium bovis antigens have recently emerged as ancillary tests for the detection of bovine tuberculosis in cattle, particularly when used after the injection of purified protein derivative (PPD) for skin testing, which significantly boosts M. bovis-specific antibody responses. The present findings demonstrate the onset and duration of boosted antibody responses after the injection of M. bovis PPD for the caudal fold test (CFT) and Mycobacterium avium and M. bovis PPDs for the comparative cervical test (CCT), administered in series in cattle experimentally infected with M. bovis. While skin tests boosted the responses to certain antigens (i.e., MPB83 and MPB70), they did not affect the responses to other antigens (e.g., ESAT-6, CFP10, MPB59, and MPB64). Administration of the CCT 105 days after the CFT resulted in an even greater secondary boost in antibody responses to MPB83 and MPB70 and to a proteinase K-digested whole-cell sonicate (WCS-PK) of M. bovis. Both IgM and IgG contributed to the initial boost in the MPB83/MPB70-specific antibody response after the CFT. The secondary boost after the CCT was primarily due to increased IgG levels. Also, the avidity of antibodies to MPB83 and MPB70 increased after the CCT in M. bovis-infected cattle. The avidity of antibodies to the WCS-PK antigens increased in the interval between the CFT and the CCT but did not increase further after the CCT. Together, these findings demonstrate that the administration of PPDs for skin tests results in additive enhancement (i.e., when the CFT and CCT are performed in series), both qualitative and quantitative, of MPB83/MPB70-specific antibody responses.
Collapse
|
10
|
Waters WR, Thacker TC, Nelson JT, DiCarlo DM, Maggioli MF, Greenwald R, Esfandiari J, Lyashchenko KP, Palmer MV. Virulence of two strains of mycobacterium bovis in cattle following aerosol infection. J Comp Pathol 2014; 151:410-9. [PMID: 25306158 DOI: 10.1016/j.jcpa.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/07/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
Abstract
Over the past two decades, highly virulent strains of Mycobacterium tuberculosis have emerged and spread rapidly in man, suggesting a selective advantage based on virulence. A similar scenario has not been described for Mycobacterium bovis infection in cattle (i.e. bovine tuberculosis). An epidemiological investigation of a recent outbreak of bovine tuberculosis in a USA dairy indicated that the causative strain of M. bovis (strain 10-7428) was particularly virulent, with rapid spread within the herd. In the present study, the virulence of this strain (10-7428) was directly compared in the target host with a well-characterized strain (95-1315) of relevance to the USA bovine tuberculosis eradication programme. Aerosol inoculation of 10(4) colony forming units of M. bovis 95-1315 (n = 8) or 10-7428 (n = 8) resulted in a similar distribution and severity of gross and microscopical lesions of tuberculosis as well as mycobacterial colonization, primarily affecting the lungs and lung-associated lymph nodes. Specific cell-mediated and antibody responses, including kinetics of the response, as well as antigen recognition profiles, were also comparable between the two treatment groups. Present findings demonstrate that M. bovis strains 95-1315 and 10-7428 have similar virulence when administered to cattle via aerosol inoculation. Other factors such as livestock management practices likely affected the severity of the outbreak in the dairy.
Collapse
Affiliation(s)
- W R Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA.
| | - T C Thacker
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | - J T Nelson
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, IA 50010, USA
| | - D M DiCarlo
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, IA 50010, USA
| | - M F Maggioli
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA; Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - R Greenwald
- Chembio Diagnostic Systems, Inc., Medford, NY 11763, USA
| | - J Esfandiari
- Chembio Diagnostic Systems, Inc., Medford, NY 11763, USA
| | | | - M V Palmer
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
11
|
Humphrey HM, Orloski KA, Olea-Popelka FJ. Bovine tuberculosis slaughter surveillance in the United States 2001-2010: assessment of its traceback investigation function. BMC Vet Res 2014; 10:182. [PMID: 25123050 PMCID: PMC4145249 DOI: 10.1186/s12917-014-0182-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background The success of tracing cattle to the herd of origin after the detection and confirmation of bovine tuberculosis (TB) lesions in cattle at slaughter is a critical component of the national bovine TB eradication program in the United States (U.S.). The aims of this study were to 1) quantify the number of bovine TB cases identified at slaughter that were successfully traced to their herd of origin in the U.S. during 2001–2010, 2) quantify the number of successful traceback investigations that found additional TB infected animals in the herd of origin or epidemiologically linked herds, and 3) describe the forms of animal identification present on domestic bovine TB cases and their association with traceback success. Results We analyzed 2001–2010 data in which 371 granulomatous lesions were confirmed as bovine TB. From these 114 bovine TB cases, 78 adults (i.e. sexually intact bovines greater than two years of age), and 36 fed (i.e. less than or equal to two years of age) were classified as domestic cattle (U.S. originated). Of these adults and fed cases, 83% and 13% were successfully traced, respectively. Of these traceback investigations, 70% of adult cases and 50% of fed cases identified additional bovine TB infected animals in the herd of origin or an epidemiologically linked herd. We found that the presence of various forms of animal identification on domestic bovine TB cases at slaughter may facilitate successful traceback investigations; however, they do not guarantee it. Conclusions These results provide valuable information with regard to epidemiological traceback investigations and serve as a baseline to aid U.S. officials when assessing the impact of newly implemented strategies as part of the national bovine TB eradication in the U.S.
Collapse
Affiliation(s)
| | | | - Francisco J Olea-Popelka
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins 80523, Colorado, USA.
| |
Collapse
|