1
|
Aurelien-Cabezas NS, Paz-Michel BA, Jacinto-Cortes I, Delgado-Enciso OG, Montes-Galindo DA, Cabrera-Licona A, Zaizar-Fregoso SA, Paz-Garcia J, Ceja-Espiritu G, Melnikov V, Guzman-Esquivel J, Rodriguez-Sanchez IP, Martinez-Fierro ML, Delgado-Enciso I. Protective Effect of Neutral Electrolyzed Saline on Gentamicin-Induced Nephrotoxicity: Evaluation of Histopathologic Parameters in a Murine Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:397. [PMID: 36837598 PMCID: PMC9968118 DOI: 10.3390/medicina59020397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Gentamicin (GM) is a nephrotoxic aminoglycoside. Neutral electrolyzed saline (SES) is a compound with anti-inflammatory, antioxidant, and immunomodulatory properties. The objective of the present study was to evaluate whether kidney damage by GM can be prevented and/or reversed through the administration of SES. Materials and Methods: The study was carried out as a prospective, single-blind, five-arm, parallel-group, randomized, preclinical trial. The nephrotoxicity model was established in male BALB/c mice by administering GM at a dose of 100 mg/kg/day intraperitoneally for 30 days, concomitantly administering (+) SES or placebo (physiologic saline solution), and then administering SES for another 30 days after the initial 30 days of GM plus SES or placebo. At the end of the test, the mice were euthanized, and renal tissues were evaluated histopathologically. Results: The GM + placebo group showed significant tubular injury, interstitial fibrosis, and increased interstitial infiltrate of inflammatory cells compared with the group without GM. Tubular injury and interstitial fibrosis were lower in the groups that received concomitant GM + SES compared with the GM + placebo group. SES administration for 30 days after the GM administration periods (GM + placebo and GM + SES for 30 days) did not reduce nephrotoxicity. Conclusions: Intraperitoneal administration of SES prevents gentamicin-induced histologic nephrotoxicity when administered concomitantly, but it cannot reverse the damage when administered later.
Collapse
Affiliation(s)
| | - Brenda A. Paz-Michel
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| | - Ivan Jacinto-Cortes
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Osiris G. Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | | | | | - Sergio A. Zaizar-Fregoso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| | - Juan Paz-Garcia
- Union Hospital Center, Villa de Álvarez, Colima 28970, Mexico
| | | | - Valery Melnikov
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Jose Guzman-Esquivel
- Clinical Epidemiology Research Unit, Mexican Institute of Social Security Institute, Villa de Álvarez 28984, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Ivan Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| |
Collapse
|
2
|
Taha M, Elazab ST, Saati AA, Ahmed GS, Baokbah TAS, Fathy K, El-Shenbaby I, Abdelbagi O, Hassan MAE, Ibrahim MM, Badawy AM. Zamzam Water Ameliorates Gentamicin-Induced Testicular Toxicity in a Rat Model via Targeting Sperm Parameters, Testicular Tissue Oxidative Insult, Inflammation, Apoptosis, and Pituitary-Gonadal Axis. TOXICS 2022; 11:2. [PMID: 36668728 PMCID: PMC9864109 DOI: 10.3390/toxics11010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Gentamicin is considered one of the most typical causes of testicular damage. Oxidative stress is a significant contributor to testicular tissue damage. Zamzam water (alkaline in nature) has an antioxidant effect. The purpose of this study was to assess the potential palliative effect of Zamzam water against gentamicin-induced testicular damage. Thirty Rats were separated into three groups, each with ten rats, as follows: The Control received only normal saline. The gentamicin group received 100 mg/kg/day of gentamicin intraperitoneally for six days from day 15 to the end of the experiment. The gentamicin +Zamzam Water group received a dose of gentamicin 100 mg/kg/day intraperitoneally with Zamzam water as their sole source of drinking from day one to day 21. Hormonal assay in serum, histological, immunohistochemical, and ultrastructural examination of testicular tissue with a molecular study were obtained. Pretreatment with Zamzam water significantly p < 0.001 increased serum levels of testosterone, FSH, and LH, as well as the percentage of sperm motility and progressive motility. It also upregulated SOD, CAT, GPx enzymatic activity, gene expression of Nrf2/HO-1, and immunoexpression of PCNA. While the percentage of dead sperm and abnormal sperm, immunoexpression of NFκB, Caspase 3, inflammatory cytokines TNFα, IL-1β, IL-6, and MDA levels significantly (p < 0.001) declined with histological improvement. It was concluded that Zamzam water as alkaline water possesses antioxidant, anti-inflammatory, and antiapoptotic effects against gentamicin-induced testicular toxicity in vivo.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah A. Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gomaa S. Ahmed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah 28814, Saudi Arabia
| | - Khaled Fathy
- Electron Microscopy Unit, Mansura University, Mansoura 35516, Egypt
| | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Makka 24382, Saudi Arabia
| | - Mahmoud A. E. Hassan
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza 12619, Egypt
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Alaa. M. Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
El-Sayed K, Ali DA, Maher SA, Ghareeb D, Selim S, Albogami S, Fayad E, Kolieb E. Prophylactic and Ameliorative Effects of PPAR-γ Agonist Pioglitazone in Improving Oxidative Stress, Germ Cell Apoptosis and Inflammation in Gentamycin-Induced Testicular Damage in Adult Male Albino Rats. Antioxidants (Basel) 2022; 11:antiox11020191. [PMID: 35204074 PMCID: PMC8868260 DOI: 10.3390/antiox11020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is ubiquitously expressed in testicular tissue and plays a crucial role in regulating various physiological processes. Pioglitazone (PIO) is one of the PPAR-γ agonists, having anti-oxidant and anti-inflammatory effects. Patients on gentamycin treatment may undergo serious side effects such as testicular damage. To the best of our knowledge, this was the first study to investigate the possible protective anti-inflammatory and anti-apoptotic effects of PIO on gentamycin-induced testicular damage. Fifty adult male Wistar albino rats included in the study as the control group (CTL) received normal saline; a gentamycin-induced testicular damage group (GM) received gentamycin (100 mg/kg); PIO5, PIO10, PIO20 groups received PIO at a dose of 5, 10, and 20 mg/ kg, respectively, for 21 days, and gentamycin was started at day 15 of the experiment for 6 days. The parameters of spermatozoa and histopathological alterations in the testes were significantly improved in the PIO20 group. Moreover, MDA levels, inflammatory mediators, and apoptotic Bax expression were decreased. The activity of glutathione peroxidase, catalase, total antioxidant capacity, and anti-apoptotic Bcl-2 genes expression were increased. It was concluded that PIO20 could protect against gentamycin-induced testicular damage in Wistar rats through its anti-oxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Karima El-Sayed
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina A. Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Dalia Ghareeb
- Clinical Pathology Department, Faculty of Medicine, Suez University, Suez 41522, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Kolieb
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: ; Tel.: +20-1006738513
| |
Collapse
|
4
|
Aly H. Testicular toxicity of gentamicin in adult rats: Ameliorative effect of lycopene. Hum Exp Toxicol 2019; 38:1302-1313. [PMID: 31319718 DOI: 10.1177/0960327119864160] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The current study was aimed to investigate the ameliorative effect of lycopene against gentamicin-induced testicular toxicity in adult rat testes. Pretreatment with lycopene (4 mg/kg/day) significantly prevented the decrease in the absolute testes weight and relative testes weight and the reduction in sperm count, motility, viability, and daily sperm production in gentamicin (100 mg/kg/day)-treated rats. Gentamicin significantly decreased the level of serum testosterone and testicular lactate dehydrogenase-X and G6PDH activities but a marked increase was observed upon pretreatment with lycopene. Testicular caspase-3 and -9 activities were significantly increased but lycopene showed significant protection from gentamicin-induced apoptosis. Oxidative stress was induced by gentamicin treatment as evidenced by increased hydrogen peroxide level and lipid peroxidation and decreased the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities and glutathione content. These alterations were effectively prevented by lycopene pretreatment. Histopathological examination showed loss of spermatogenesis and morphological abnormalities of the testis after treatment with gentamycin. These abnormalities were effectively normalized by pretreatment with lycopene. In conclusion, gentamicin decreases rat testes weight and inhibits spermatogenesis. It induces oxidative stress and apoptosis by possible mitochondrial dysfunction. These data provide insight into the mode of action of gentamicin-induced testicular toxicity and the beneficial role provided by lycopene to restore the suppressed spermatogenesis.
Collapse
Affiliation(s)
- Haa Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
5
|
Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1785614. [PMID: 29991974 PMCID: PMC6016160 DOI: 10.1155/2018/1785614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
We aimed in our current study to explore the protective effect of Ginkgo biloba (GB) and magnetized water (MW) against nephrotoxicity associating induced type 2 diabetes mellitus in rat. Here, we induced diabetes by feeding our lab rats on a high fat-containing diet (4 weeks) and after that injecting them with streptozotocin (STZ). We randomly divided forty rats into four different groups: nontreated control (Ctrl), nontreated diabetic (Diabetic), Diabetic+GB (4-week treatment), and Diabetic+MW (4-week treatment). After the experiment was finished, serum and kidney tissue samples were gathered. Blood levels of glucose, triglycerides, cholesterol, creatinine, and urea were markedly elevated in the diabetic group than in the control group. In all animals treated with GB and MW, the levels of urea, creatinine, and glucose were significantly reduced (all P < 0.01). GB and MW attenuated glomerular and tubular injury as well as the histological score. Furthermore, they normalized the contents of glutathione reductase and SOD2. In summary, our data showed that GB and MW treatment protected type 2 diabetic rat kidneys from nephrotoxic damages by reducing the hyperlipidemia, uremia, oxidative stress, and renal dysfunction.
Collapse
|
6
|
Xing Z, Pan W, Zhang J, Xu X, Zhang X, He X, Fan M. Hydrogen Rich Water Attenuates Renal Injury and Fibrosis by Regulation Transforming Growth Factor-β Induced Sirt1. Biol Pharm Bull 2018; 40:610-615. [PMID: 28458345 DOI: 10.1248/bpb.b16-00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current research was designed to study the role of hydrogen in renal fibrosis and the renal epithelial to mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Hydrogen rich water (HW) was used to treat animal and cell models. Unilateral ureteral obstruction (UUO) was performed on Balb/c mice to create a model of renal fibrosis. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TGF-β1 for 36 h to induce EMT. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured to test renal function, in addition, kidney histology and immunohistochemical staining of alpha-smooth muscle actin (α-SMA) positive cells was performed to examine the morphological changes. The treatment with UUO induced a robust fibrosis of renal interstitium, shrink of glomerulus and partial fracture of basement membrane. Renal function was also impaired in the experimental group with UUO, with an increase of Scr and BUN in serum. After that, Western-blot was performed to examine the expression of α-SMA, fibronectin, E-cadherin, Smad2 and Sirtuin-1 (Sirt1). The treatment with HW attenuated the development of fibrosis and deterioration of renal function in UUO model. In HK-2 cells, the pretreatment of HW abolished EMT induced by TGF-β1. The down-regulation the expression of Sirt1 induced by TGF-β1 which was dampened by the treatment with HW. Sirtinol, a Sirt1 inhibitor, reversed the effect of HW on EMT induced by TGF-β1. HW can inhibit the development of fibrosis in kidney and prevents HK-2 cells from undergoing EMT which is mediated through Sirt1, a downstream molecule of TGF-β1.
Collapse
Affiliation(s)
- Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Wanma Pan
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xianlin Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University
| |
Collapse
|
7
|
Berkovitch M, Shain Y, Kozer E, Goldman M, Abu-Kishk I. Hyperbaric oxygen treatment and nephrotoxicity induced by gentamicin in rats. BMC Nephrol 2017; 18:347. [PMID: 29197348 PMCID: PMC5712188 DOI: 10.1186/s12882-017-0768-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background Nephrotoxicity is a significant adverse side effect of gentamicin. Previous preclinical studies showed that hyperbaric oxygen treatment (HBOT) may have beneficial effects by attenuating renal damage in rats subjected to renal injury. We evaluated the effect of HBOT on acute renal failure caused by gentamicin. Methods Thirty-six rats were divided into four groups. Gentamicin (150 mg/kg for 5 consecutive days) was administered in 30 rats, 10 rats received only gentamicin, 10 rats received 100% oxygen therapy on days 1-5 of the experiment, 10 received daily HBOT on days 1-5 of the experiment, and the remaining six served as a control group. On day 6, renal function tests and renal pathological examinations were performed. Results Body weight and biochemical parameters were similar in all groups except for higher plasma levels of calcium in the 100% oxygen group (P = 0.03). All the rats in the experimental group showed biochemical parameters compatible with renal failure (high serum levels of urea and creatinine). All the rats in the control group had normal renal function tests. Two rats from the HBOT group died on the fifth day of the experiment. All rats in the control group demonstrated normal renal morphology. All 28 intoxicated rats showed moderate to severe histopathological changes without significant differences between the groups. Conclusions Treatment of gentamicin-induced nephrotoxicity with either HBOT or 100% oxygen for 5 days had no beneficial renal effect. Mortality was observed only in the HBOT group.
Collapse
Affiliation(s)
- Matitiahu Berkovitch
- Pediatric Division, Assaf Harofeh Medical Center, 70300, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Shain
- Pediatric Division, Assaf Harofeh Medical Center, 70300, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Kozer
- Pediatric Division, Assaf Harofeh Medical Center, 70300, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Goldman
- Pediatric Division, Assaf Harofeh Medical Center, 70300, Zerifin, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ibrahim Abu-Kishk
- Pediatric Division, Assaf Harofeh Medical Center, 70300, Zerifin, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Li J, Hong Z, Liu H, Zhou J, Cui L, Yuan S, Chu X, Yu P. Hydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-apoptosis and Anti-inflammation. Front Pharmacol 2016; 7:106. [PMID: 27148060 PMCID: PMC4840252 DOI: 10.3389/fphar.2016.00106] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose: Hydrogen is a proven novel antioxidant that selectively reduces hydroxyl radicals. In this study, we investigated the effects of hydrogen-rich saline solution on the prevention of renal injury induced by ischemia/reperfusion (I/R) and on renal function recovery. Methods: A rat model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle, followed by 108 h reperfusion. The right kidney was surgically removed. Then, 0.9% NaCl solution (1 ml/kg) or hydrogen-rich saline solution (HRSS; 1 ml/kg) was injected into the abdominal cavity at 4 h intervals. We assessed the influence of HRSS or control saline solution on the recovery of renal function after I/R injury. Kidney tissues were taken at different time points (24, 36, 48, 72, and 108 h after reperfusion) and frozen (-80°C). Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive staining. Additionally, the apoptotic factors (Bcl-2, Bax, caspase-3, caspase-9, and caspase-8) and the pro-inflammatory cytokines (IL-6 and TNF-α) were measured in the kidney tissues. Finally, serum blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. Results: Histological analyses revealed a marked reduction of interstitial congestion, edema and hemorrhage in renal tissue after HRSS treatment compared to saline treatment. After I/R injury, BUN, Cr, Bcl-2, caspase-3, caspase-9, caspase-8, IL-6, and TNF-α were all significantly increased, while Bax expression was decreased. HRSS remarkably reversed these changes. Moreover, BUN and Cr decreased more rapidly in the rats treated with HRSS compared to the rats treated with control saline solution. Conclusions: HRSS showed a protective effect in the prevention of renal injury and could promote renal function recovery after I/R injury in rats. HRSS might partially exert its role through an anti-apoptotic and anti-inflammatory action in kidney cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Burn and Plastic Surgery, Jinling HospitalNanjing, China; Department of Nephrology, Yongchuan Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhijian Hong
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Hong Liu
- Department of Nephrology, Hospital of Traditional Chinese Medicine Chongqing, China
| | - Jihong Zhou
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Lei Cui
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Siming Yuan
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| | - Xianghua Chu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University Qingdao, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital Nanjing, China
| |
Collapse
|
9
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
10
|
Dixon BJ, Tang J, Zhang JH. The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med Gas Res 2013; 3:10. [PMID: 23680032 PMCID: PMC3660246 DOI: 10.1186/2045-9912-3-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023] Open
Abstract
Studies on molecular hydrogen have evolved tremendously from its humble beginnings and have continued to change throughout the years. Hydrogen is extremely unique since it has the capability to act at the cellular level. Hydrogen is qualified to cross the blood brain barrier, to enter the mitochondria, and even has the ability to translocate to the nucleus under certain conditions. Once in these ideal locations of the cell, previous studies have shown that hydrogen exerts antioxidant, anti-apoptotic, anti-inflammatory, and cytoprotective properties that are beneficial to the cell. Hydrogen is most commonly applied as a gas, water, saline, and can be applied in a variety of other mediums. There are also few side effects involving hydrogen, thus making hydrogen a perfect medical gas candidate for the convention of novel therapeutic strategies against cardiovascular, cerebrovascular, cancer, metabolic, and respiratory diseases and disorders. Although hydrogen appears to be faultless at times, there still are several deficiencies or snares that need to be investigated by future studies. This review article seeks to delve and comprehensively analyze the research and experiments that alludes to molecular hydrogen being a novel therapeutic treatment that medicine desperately needs.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology, Loma Linda University School of Medicine, Risley Hall, Room 223, Loma Linda, CA, 92354, USA.
| | | | | |
Collapse
|
11
|
Abstract
Molecular hydrogen (dihydrogen, H(2)) acts as a therapeutic antioxidant by selectively reducing hydroxyl radicals (•OH) and peroxynitrite (ONOO-). It has been well-known that ionising radiation (IR) causes oxidative damage and consequent apoptosis mainly due to the production of •OH that follows radiolysis of H(2)O. Our department reported the protective effect of H(2) in irradiated cells and mice for the first time, and this effect is well repeated by us and another laboratory in different experimental animal models. A randomised, placebo-controlled investigation also showed consumption of H(2) can improve the quality of life of patients treated with radiotherapy for liver tumours. These encouraging results suggested that H(2) has a potential as a radioprotective agent with efficacy and non-toxicity.
Collapse
Affiliation(s)
- Yunhai Chuai
- Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|