1
|
Okawa R, Yasui G, Mihara B, Hayashi N. Optimization of the fluid-attenuated inversion recovery (FLAIR) imaging for use in autopsy imaging of the brain region using synthetic MRI. Technol Health Care 2023; 31:661-674. [PMID: 36093648 DOI: 10.3233/thc-220230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The failure of cerebrospinal fluid (CSF) signal suppression in postmortem fluid-attenuated inversion recovery (FLAIR) of the brain is a problem. OBJECTIVE The present study was to clarify the relationship between the temperature of deceased persons and CSF T1, and to optimize the postmortem brain FLAIR imaging method using synthetic MRI. METHODS Forehead temperature was measured in 15 deceased persons. Next, synthetic MRI of the brain was performed, the CSF T1 was measured, and the optimal TI was calculated. Two types of FLAIR images were obtained with the clinical and optimal TI. The relationship between forehead temperature and the CSF T1 and optimal TI was evaluated. The optimized FLAIR images were physically and visually evaluated. RESULTS The CSF T1 and optimal TI were strongly correlated with forehead temperature. Comparing the average SNR and CNR ratios and visual evaluation scores of the two FLAIR images, those captured with the optimal TI showed statistically lower SNR, higher CNR, and higher visual evaluation scores (p< 0.01). CONCLUSIONS Synthetic MRI enables the quantification of the CSF T1 resulting from postmortem temperature decreases and calculation of the optimal TI, which could aid in improving the failure of CSF signal suppression and in optimizing postmortem brain FLAIR imaging.
Collapse
Affiliation(s)
- Ryuya Okawa
- Department of Diagnostic Imaging, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Isesaki, Japan
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Go Yasui
- Department of Diagnostic Imaging, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Isesaki, Japan
| | - Ban Mihara
- Department of Neurology, Institute of Brain and Blood Vessels, Mihara Memorial Hospital, Isesaki, Japan
| | - Norio Hayashi
- Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| |
Collapse
|
4
|
Tsuneya S, Makino Y, Chiba F, Kojima M, Yoshida M, Kishimoto T, Mukai H, Hattori S, Iwase H. Postmortem magnetic resonance imaging revealed bilateral globi pallidi lesions in a death associated with prolonged carbon monoxide poisoning: a case report. Int J Legal Med 2021; 135:921-928. [PMID: 33447889 DOI: 10.1007/s00414-021-02506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
A man and a woman were found dead in the same car with a burned coal briquette. The cause of death of the woman was assigned to acute carbon monoxide (CO) poisoning without difficulty based on typical findings associated with this condition, including elevation of carboxyhaemoglobin (COHb). However, the man had an unremarkable elevation of COHb and a higher rectal temperature compared to that of the woman. Postmortem computed tomography (PMCT) revealed ambiguous low-density areas in the bilateral globi pallidi. Further analysis by postmortem magnetic resonance (PMMR) imaging showed these lesions more clearly; the lesions appeared as marked high signal intensity areas on both the T2-weighted images and the fluid-attenuated inversion recovery sequences. A subsequent autopsy revealed signs of pneumonia, dehydration, starvation, and hypothermia, suggesting that the man died from prolonged CO poisoning. Both globi pallidi contained grossly ambiguous lesions, and a detailed neuropathologic investigation revealed these lesions to be coagulative necrotic areas; this finding was compatible with a diagnosis of prolonged CO poisoning. This case report shows that postmortem imaging, especially PMMR, is useful for detecting necrotic lesions associated with prolonged CO poisoning. This report further exemplifies the utility of PMMR for detecting brain lesions, which may be difficult to detect by macroscopic analysis.
Collapse
Affiliation(s)
- Shigeki Tsuneya
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yohsuke Makino
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Fumiko Chiba
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masatoshi Kojima
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Maiko Yoshida
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takashi Kishimoto
- Department of Molecular Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hiroki Mukai
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Shinya Hattori
- Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hirotaro Iwase
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Legal Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
5
|
Tashiro K, Kobayashi T, Shiotani S, Saitou H, Kaga K, Someya S, Yoshida M, Yamamori M, Kamimura Y, Kuramochi R, Miyamoto K, Hayakawa H, Muranaka H, Homma K. Skeletal muscular relaxation time from postmortem MR imaging of adult humans. FORENSIC IMAGING 2020. [DOI: 10.1016/j.fri.2020.200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Yamashiro A, Kobayashi M, Saito T. Cerebrospinal fluid T1 value phantom reproduction at scan room temperature. J Appl Clin Med Phys 2019; 20:166-175. [PMID: 31179645 PMCID: PMC6612700 DOI: 10.1002/acm2.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
The T1 value of pure water, which is often used as a phantom to simulate cerebrospinal fluid, is significantly different from that of in-vivo cerebrospinal fluid. The purpose of this study was to develop a phantom with a T1 value equivalent to that of in-vivo cerebrospinal fluid under examination room temperature (23°C-25°C). In this study, 1.5 and 3.0 T magnetic resonance imaging scanners were used. We examined the signal intensity change in relation to pure water temperature, the T1 values of acetone-diluted solutions (0-100 v/v%, in 10 steps), and the correlation coefficients obtained from volunteers and the prepared phantoms. The T1 value was close to the value reported in the literature for cerebrospinal fluid when the acetone-diluted solution was 70 v/v% or higher at scan room temperature. The value at that time was 3532.81-4704.57 ms at 1.5 T and it ranged from 4052.41 to 5701.61 ms at 3.0 T. The highest correlation with the values obtained from the volunteers was r = 0.993 with pure acetone at 1.5 T and r = 0.991 with acetone 90 v/v% at 3.0 T. The relative error of the best phantom-volunteer match was 32.61 (%) ± 6.71 at 1.5 T and 46.67 (%) ± 4.31 at 3.0 T. The T1 value measured by the null point method did not detect a significant difference between in vivo CSF and acetone 100 v/v% at 1.5 T and acetone 90 v/v% at 3.0 T. The T1 value of cerebrospinal fluid in the living body at scan room temperature was reproduced with acetone. The optimum concentration of acetone for cerebrospinal-fluid reproduction was pure acetone at 1.5 T and 90 v/v% at 3.0 T.
Collapse
Affiliation(s)
- Akihiro Yamashiro
- Department of Radiology, Nagano Red Cross Hospital, Nagano-City, Nagano-ken, Japan
| | - Masato Kobayashi
- Department of Radiology, Shinano Town Shin-Etsu Hospital, Kamiminochi-gun, Nagano-ken, Japan
| | - Takaaki Saito
- Department of Radiology, Iiyama Red Cross Hospital, Iiyama-City, Nagano-ken, Japan
| |
Collapse
|
7
|
Shiotani S, Kobayashi T, Hayakawa H, Homma K, Sakahara H. Hepatic Relaxation Times from Postmortem MR Imaging of Adult Humans. Magn Reson Med Sci 2015; 15:281-7. [PMID: 26701693 PMCID: PMC5608124 DOI: 10.2463/mrms.mp.2015-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: To measure T1 and T2 values of hepatic postmortem magnetic resonance (PMMR) imaging. Materials and Methods: We performed hepatic PMMR imaging of 22 deceased adults (16 men, 6 women; mean age, 56.3 years) whose deaths were for reasons other than liver injury or disease at a mean of 27.7 hours after death. Before imaging, the bodies were kept in cold storage at 4°C (mean rectal temperature, 17.6°C). We measured T1 and T2 values in the liver at two sites (the anterior segment of the right lobe and the lateral segment of the left lobe). We also investigated the influence of the body temperature and postmortem interval on T1 and T2 values. Results: In the anterior segment of the right lobe and the lateral segment of the left lobe, T1 values of PMMR imaging were 524 ± 112 ms and 472 ± 104 ms (mean ± standard deviation), respectively; while T2 values were 42 ± 6 ms and 43 ± 8 ms, respectively. T1 and T2 values did not differ significantly between the two sites (P ≧ 0.05). Regarding temperature, the T2 values of hepatic PMMR imaging were linearly correlated with the body temperature, but the T1 values were not. The T1 and T2 values of the two sites in the liver did not correlate with the postmortem interval. Conclusion: Reduction in body temperature after death is considered to induce T1 and T2 value changes in the liver on PMMR imaging.
Collapse
|