1
|
Gast H, Horowitz A, Krupnik R, Barazany D, Lifshits S, Ben-Amitay S, Assaf Y. A Method for In-Vivo Mapping of Axonal Diameter Distributions in the Human Brain Using Diffusion-Based Axonal Spectrum Imaging (AxSI). Neuroinformatics 2023; 21:469-482. [PMID: 37036548 PMCID: PMC10406702 DOI: 10.1007/s12021-023-09630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
In this paper we demonstrate a generalized and simplified pipeline called axonal spectrum imaging (AxSI) for in-vivo estimation of axonal characteristics in the human brain. Whole-brain estimation of the axon diameter, in-vivo and non-invasively, across all fiber systems will allow exploring uncharted aspects of brain structure and function relations with emphasis on connectivity and connectome analysis. While axon diameter mapping is important in and of itself, its correlation with conduction velocity will allow, for the first time, the explorations of information transfer mechanisms within the brain. We demonstrate various well-known aspects of axonal morphometry (e.g., the corpus callosum axon diameter variation) as well as other aspects that are less explored (e.g., axon diameter-based separation of the superior longitudinal fasciculus into segments). Moreover, we have created an MNI based mean axon diameter map over the entire brain for a large cohort of subjects providing the reference basis for future studies exploring relation between axon properties, its connectome representation, and other functional and behavioral aspects of the brain.
Collapse
Affiliation(s)
- Hila Gast
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Assaf Horowitz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronnie Krupnik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Barazany
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Lifshits
- Department of Statistics and Operations Research, Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Shani Ben-Amitay
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Strauss center for neuroimaging, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Abstract
This article discusses new diffusion-weighted imaging (DWI) sequences, diffusion tensor imaging (DTI), and fiber tractography (FT), as well as more advanced diffusion imaging in pediatric brain and spine. Underlying disorder and pathophysiology causing diffusion abnormalities are discussed. Multishot echo planar imaging (EPI) DWI and non-EPI DWI provide higher spatial resolution with less susceptibility artifact and distortion, which are replacing conventional single-shot EPI DWI. DTI and FT have established clinical significance in pediatric brain and spine. This article discusses advanced diffusion imaging, including diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusion spectrum imaging, intravoxel incoherent motion, and oscillating-gradient spin-echo.
Collapse
Affiliation(s)
- Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2 A209K, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Garic D, Yeh FC, Graziano P, Dick AS. In vivo restricted diffusion imaging (RDI) is sensitive to differences in axonal density in typical children and adults. Brain Struct Funct 2021; 226:2689-2705. [PMID: 34432153 DOI: 10.1007/s00429-021-02364-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
The ability to dissociate axonal density in vivo from other microstructural properties is important for the diagnosis and treatment of neurologic disease, and new methods to do so are being developed. We investigated one such method-restricted diffusion imaging (RDI)-to see whether it can more accurately replicate histological axonal density patterns in the corpus callosum (CC) of adults and children compared to diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and generalized q-sampling imaging (GQI) methods. To do so, we compared known axonal density patterns defined by histology to diffusion-weighted imaging (DWI) scans of 840 healthy 20- to 40-year-old adults, and to DWI scans of 129 typically developing 7-month-old to 18-year-old children and adolescents. Contrast analyses were used to compare pattern similarities between the in vivo metric and previously published histological density models. We found that RDI was effective at mapping axonal density of small (Cohen's d = 2.60) and large fiber sizes (Cohen's d = 2.84) in adults. The same pattern was observed in the developing sample (Cohen's d = 3.09 and 3.78, respectively). Other metrics, notably NODDI's intracellular volume fraction in adults and GQI generalized fractional anisotropy in children, were also sensitive metrics. In conclusion, the study showed that the novel RDI metric is sensitive to density of small and large axons in adults and children, with both single- and multi-shell acquisition DWI data. Its effectiveness and availability to be used on standard as well as advanced DWI acquisitions makes it a promising method in clinical settings.
Collapse
Affiliation(s)
- Dea Garic
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Paulo Graziano
- Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
Ohashi E, Hayakawa I, Abe Y, Tsutsumi Y, Kubota M. Transient Probst Bundle Diffusion Restriction: An Acute Encephalopathy Equivalent to Clinically Mild Encephalopathy with a Reversible Splenial Lesion. Intern Med 2021; 60:2667-2670. [PMID: 33642486 PMCID: PMC8429303 DOI: 10.2169/internalmedicine.6840-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Probst bundles are selectively seen in patients with agenesis of the corpus callosum (CC) and are thought to be homologous to the CC. We herein report a 19-year-old woman with partial agenesis of the CC. She developed acute encephalopathy during Bordetella pertussis infection. Brain magnetic resonance imaging (MRI) showed restricted diffusion of bilateral Probst bundles. She was treated with anti-epileptics and azithromycin and recovered with no neurological sequelae. Follow-up MRI showed the resolution of the diffusion abnormality. The characteristics of diffusion-weighted images on brain MRI and clinical course mimicked those in cases of clinically mild encephalopathy/encephalitis with reversible splenial lesion.
Collapse
Affiliation(s)
- Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Japan
| | - Yoshiyuki Tsutsumi
- Department of Radiology, National Center for Child Health and Development, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Japan
| |
Collapse
|
5
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
6
|
Emsell L, Adamson C, De Winter FL, Billiet T, Christiaens D, Bouckaert F, Adamczuk K, Vandenberghe R, Seal ML, Sienaert P, Sunaert S, Vandenbulcke M. Corpus callosum macro and microstructure in late-life depression. J Affect Disord 2017; 222:63-70. [PMID: 28672181 DOI: 10.1016/j.jad.2017.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Differences in corpus callosum (CC) morphology and microstructure have been implicated in late-life depression and may distinguish between late and early-onset forms of the illness. However, a multimodal approach using complementary imaging techniques is required to disentangle microstructural alterations from macrostructural partial volume effects. METHODS 107 older adults were assessed: 55 currently-depressed patients without dementia and 52 controls without cognitive impairment. We investigated group differences and clinical associations in 7 sub-regions of the mid-sagittal corpus callosum using T1 anatomical data, white matter hyperintensity (WMH) quantification and two different diffusion MRI (dMRI) models (multi-tissue constrained spherical deconvolution, yielding apparent fibre density, AFD; and diffusion tensor imaging, yielding fractional anisotropy, FA and radial diffusivity, RD). RESULTS Callosal AFD was lower in patients compared to controls. There were no group differences in CC thickness, surface area, FA, RD, nor whole brain or WMH volume. Late-onset of depression was associated with lower FA, higher RD and lower AFD. There were no associations between any imaging measures and psychotic features or depression severity as assessed by the geriatric depression scale. WMH volume was associated with lower FA and AFD, and higher RD in patients. LIMITATIONS Patients were predominantly treatment-resistant. Measurements were limited to the mid-sagittal CC. dMRI analysis was performed on a smaller cohort, n=77. AFD was derived from low b-value data. CONCLUSIONS Callosal structure is largely preserved in LLD. WMH burden may impact on CC microstructure in late-onset depression suggesting vascular pathology has additional deleterious effects in these patients.
Collapse
Affiliation(s)
- Louise Emsell
- Old Age Psychiatry, University Psychiatric Centre (UPC) - KU Leuven, Belgium; Translational MRI & Radiology, KU Leuven & University Hospital Leuven, Belgium.
| | - Christopher Adamson
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | | | - Thibo Billiet
- Translational MRI & Radiology, KU Leuven & University Hospital Leuven, Belgium
| | - Daan Christiaens
- Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, KU Leuven & Medical Imaging Research Center, University Hospital Leuven, Belgium; Division of Imaging Sciences and Biomedical Engineering, Kings College London, UK
| | - Filip Bouckaert
- Old Age Psychiatry, University Psychiatric Centre (UPC) - KU Leuven, Belgium; KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neurostimulation (AcCENT), Kortenberg, Belgium
| | - Katarzyna Adamczuk
- Laboratory for Cognitive Neurology, Department of Neurology, KU Leuven & University Hospital Leuven, Belgium; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurology, KU Leuven & University Hospital Leuven, Belgium
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Pascal Sienaert
- KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neurostimulation (AcCENT), Kortenberg, Belgium
| | - Stefan Sunaert
- Translational MRI & Radiology, KU Leuven & University Hospital Leuven, Belgium
| | | |
Collapse
|
7
|
Hori M, Kamiya K, Nakanishi A, Fukunaga I, Miyajima M, Nakajima M, Suzuki M, Suzuki Y, Irie R, Kamagata K, Arai H, Aoki S. Prospective estimation of mean axon diameter and extra-axonal space of the posterior limb of the internal capsule in patients with idiopathic normal pressure hydrocephalus before and after a lumboperitoneal shunt by using q-space diffusion MRI. Eur Radiol 2015; 26:2992-8. [PMID: 26694062 PMCID: PMC4972860 DOI: 10.1007/s00330-015-4162-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
Objectives To prospectively estimate the mean axon diameter (MAD) and extracellular space of the posterior limb of the internal capsule (PLIC) in patients with idiopathic normal pressure hydrocephalus (iNPH) before and after a lumboperitoneal (LP) shunting operation using q-space diffusion MRI analysis. Methods We studied 12 consecutive patients with iNPH and 12 controls at our institution. After conventional magnetic resonance imaging (MRI), q-space image (QSI) data were acquired with a 3-T MRI scanner. The MAD and extra-axonal space of the PLIC before and after LP shunting were calculated using two-component q-space imaging analyses; the before and after values were compared. Results After LP shunt surgery, the extracellular space of the PLIC was significantly higher than that of the same patients before the operation (one-way analysis of variance (ANOVA) with Scheffé’s post-hoc test, P = 0.024). No significant differences were observed in the PLIC axon diameters among normal controls or in patients before and after surgery. Conclusion Increases in the root mean square displacement in the extra-axonal space of the PLIC in patients with iNPH after an LP shunt procedure are associated with the microstructural changes of white matter and subsequent abatement of patient symptoms. Key Points • Q-space diffusion MRI provides information on microstructural changes in the corticospinal tract • Lumboperitoneal (LP) shunting operation is useful for idiopathic normal pressure hydrocephalus • Q-space measurement may be a biomarker for the effect of the LP shunt procedure
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Nakanishi
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuriko Suzuki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Ryusuke Irie
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Radiology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|