1
|
Mao Z, Yu Y. Diagnostic Performance of Putaminal Hypointensity on Susceptibility MRI in Distinguishing Parkinson Disease from Progressive Supranuclear Palsy: A Meta-Analysis. Mov Disord Clin Pract 2022; 10:168-174. [PMID: 36825057 PMCID: PMC9941919 DOI: 10.1002/mdc3.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background Idiopathic Parkinson's disease (IPD) and progressive supranuclear palsy (PSP) have similar clinical signs and symptoms, making accurate clinical diagnosis difficult. T2* gradient echo (T2* GRE), susceptibility-weighted imaging (SWI), and quantitative susceptibility mapping (QSM) are susceptibility MR imaging sequences that provide more information about brain iron levels than other conventional MR imaging. Objective This study aimed to evaluate the diagnostic power of putaminal hypointensity on T2* GRE, SWI, and QSM in distinguishing PSP from IPD. Methods Eligible studies were identified via systematic searches of PubMed and Clarivate Analytics® Web of Science® Core Collection. Studies that satisfied the inclusion and exclusion criteria were reviewed. A meta-analysis was conducted using the hierarchical summary receiver operating characteristic curve approach. Results Our literature search of the two databases yielded 562 primary articles, 10 of which were deemed relevant and only six were eligible for further analyses. We performed a meta-analysis of putaminal hypointensity measurements: 438 patients with IPD and 109 patients with PSP were enrolled in the quantitative synthesis. The meta-analysis of six studies with 547 patients revealed a sensitivity of 69% (95% confidence interval (CI): 33%-90%) and specificity of 91% (95% CI: 80%-96%) for putaminal hypointensity on T2* GRE, SWI, or QSM distinguishing PSP from IPD. Conclusions Putaminal hypointensity on T2* GRE, SWI, or QSM is able to distinguish patients with PSP from those with IPD with high specificity. Further multicenter prospective studies on patients are needed to verify our results.
Collapse
Affiliation(s)
- Zhijuan Mao
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ying Yu
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
An Updated Overview of the Magnetic Resonance Imaging of Brain Iron in Movement Disorders. Behav Neurol 2022; 2022:3972173. [PMID: 35251368 PMCID: PMC8894064 DOI: 10.1155/2022/3972173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 01/12/2023] Open
Abstract
Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement disorders.
Collapse
|
3
|
Reduced monoaminergic nuclei MRI signal detectable in pre-symptomatic older adults with future memory decline. Sci Rep 2020; 10:18707. [PMID: 33127923 PMCID: PMC7603335 DOI: 10.1038/s41598-020-71368-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence from murine models and human post-mortem studies indicates that monoaminergic nuclei undergo degeneration at the pre-symptomatic stage of Alzheimer’s disease (AD). Analysing 129 datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and relying on the Clinical Dementia Rating as group-defining instrument, we hypothesised that the MRI signal of monoaminergic nuclei would be a statistically significant predictor of memory decline in participants initially recruited in ADNI as healthy adults. As opposed to a group of cognitively stable participants, participants developing memory decline had reduced signal in the ventral tegmental area at baseline, before any evidence of functional decline emerged. These findings indicate that monoaminergic degeneration predates the onset of memory decline in an AD-centred initiative, with a crucial involvement of very-early changes of a dopaminergic region. This translates into potential informative avenues for pharmacological treatment of pre-symptomatic AD.
Collapse
|
4
|
Shen B, Pan Y, Jiang X, Wu Z, Zhu J, Dong J, Zhang W, Xu P, Dai Y, Gao Y, Xiao C, Zhang L. Altered putamen and cerebellum connectivity among different subtypes of Parkinson's disease. CNS Neurosci Ther 2019; 26:207-214. [PMID: 31730272 PMCID: PMC6978269 DOI: 10.1111/cns.13259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/28/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
Objective Impairment of basal ganglia (BG)‐thalamo‐cortical circuit causes various symptoms of Parkinson's disease (PD). We investigated the functional connectivity (FC) patterns of putamen among PD subtypes and healthy control (HC) and explored their clinical significance. Methods A total of 16 patients with tremor‐dominant (TD) PD, 23 patients with postural instability and gait difficulty‐dominant (PIGD) PD, and 31 HC that underwent functional magnetic resonance imaging were observed. Voxel‐wise FC analysis was performed by computing correlation between bilateral putamen and other voxels within the brain. Correlation analysis was performed between FC strength and clinical symptoms. Results Compared with PIGD group, TD group showed increased FC between left putamen and right cerebellum lobule VI and cerebellum crus I, then we compared the cerebellum FC difference among the three groups. The cerebellum lobule VI FC difference was mainly involved in motor related cortex, and the cerebellum crus I FC difference was related to cognition areas. While compared with HC, TD and PIGD groups both had significant FC difference brain areas correlated with motor and cognition symptoms. The connectively of putamen and right cerebellum lobules VI and I showed positive correlation with tremor and Montreal Cognitive Assessment degree of scores, respectively. The connectivity of putamen and sensorimotor cortex had negative correlation with PIGD scores. Conclusions The altered connectivity of BG‐cortical circuit in patients with PD was related to PIGD symptoms. Motor and cognitive impairments declined slower in patients with TD PD, which may be related to increased functional connectivity between putamen and cerebellum.
Collapse
Affiliation(s)
- Bo Shen
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Jiang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuang Wu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingde Dong
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yang Gao
- Department of Computer Science and Technology, Nanjing University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol 2019; 31:448-454. [PMID: 29746401 DOI: 10.1097/wco.0000000000000581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This update discusses novel aspects on clinicopathological concepts and therapeutic challenges in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), arising from publications of the last 1.5 years. RECENT FINDINGS The clinical criteria for diagnosis of PSP have been revised. Clinical variability of pathologically defined PSP and MSA makes the development of mature biomarkers for early diagnosis and biomarker-based trial design indispensable. Novel molecular techniques for biomarker supported diagnosis of PSP and MSA and for monitoring disease progression are being studied. Research in the pathophysiology of both diseases generates gradual progress in the understanding of the underlying processes. Several promising disease-modifying therapeutic approaches for PSP and MSA are now moving into clinical trials. SUMMARY Recent research generates insights in the pathophysiological relevant processes and raises hope for earlier clinical diagnosis and disease-modifying therapies of patients with PSP and MSA.
Collapse
|
6
|
Lee JH, Lee MS. Brain Iron Accumulation in Atypical Parkinsonian Syndromes: in vivo MRI Evidences for Distinctive Patterns. Front Neurol 2019; 10:74. [PMID: 30809185 PMCID: PMC6379317 DOI: 10.3389/fneur.2019.00074] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Recent data suggest mechanistic links among perturbed iron homeostasis, oxidative stress, and misfolded protein aggregation in neurodegenerative diseases. Iron overload and toxicity toward dopaminergic neurons have been established as playing a role in the pathogenesis of Parkinson's disease (PD). Brain iron accumulation has also been documented in atypical parkinsonian syndromes (APS), mainly comprising multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Iron-sensitive magnetic resonance imaging (MRI) has been applied to identify iron-related signal changes for the diagnosis and differentiation of these disorders. Topographic patterns of widespread iron deposition in deep brain nuclei have been described as differing between patients with MSA and PSP and those with PD. A disease-specific increase of iron occurs in the brain regions mainly affected by underlying disease pathologies. However, whether iron changes are a primary pathogenic factor or an epiphenomenon of neuronal degeneration has not been fully elucidated. Moreover, the clinical implications of iron-related pathology in APS remain unclear. In this review study, we collected data from qualitative and quantitative MRI studies on brain iron accumulation in APS to identify disease-related patterns and the potential role of iron-sensitive MRI.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| | - Myung-Sik Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Abstract
Qualitative and quantitative structural magnetic resonance imaging offer objective measures of the underlying neurodegeneration in atypical parkinsonism. Regional changes in tissue volume, signal changes and increased deposition of iron as assessed with different structural MRI techniques are surrogate markers of underlying neurodegeneration and may reflect cell loss, microglial proliferation and astroglial activation. Structural MRI has been explored as a tool to enhance diagnostic accuracy in differentiating atypical parkinsonian disorders (APDs). Moreover, the longitudinal assessment of serial structural MRI-derived parameters offers the opportunity for robust inferences regarding the progression of APDs. This review summarizes recent research findings as (1) a diagnostic tool for APDs as well as (2) as a tool to assess longitudinal changes of serial MRI-derived parameters in the different APDs.
Collapse
|
8
|
|
9
|
Low signal intensity in motor cortex on susceptibility-weighted MR imaging is correlated with clinical signs of amyotrophic lateral sclerosis: a pilot study. J Neurol 2018; 265:552-561. [PMID: 29356968 DOI: 10.1007/s00415-017-8728-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
There is no reliable objective indicator for upper motor neuron dysfunction in amyotrophic lateral sclerosis (ALS). To determine the clinical significance and potential utility of magnetic resonance (MR) signals, we investigated the relationship between clinical symptoms and susceptibility changes in the motor cortex measured using susceptibility-weighted MR imaging taken by readily available 3-T MRI in clinical practice. Twenty-four ALS patients and 14 control subjects underwent 3-T MR T1-weighted imaging and susceptibility-weighted MR imaging with the principles of echo-shifting with a train of observations (PRESTO) sequence. We analysed relationships between relative susceptibility changes in the motor cortex assessed using voxel-based analysis (VBA) and clinical scores, including upper motor neuron score, ALS functional rating scale revised score, and Medical Research Council sum score on physical examination. Patients with ALS exhibited significantly lower signal intensity in the precentral gyrus on susceptibility-weighted MR imaging compared with controls. Clinical scores were significantly correlated with susceptibility changes. Importantly, the extent of the susceptibility changes in the bilateral precentral gyri was significantly correlated with upper motor neuron scores. The results of our pilot study using VBA indicated that low signal intensity in motor cortex on susceptibility-weighted MR imaging may correspond to clinical symptoms, particularly upper motor neuron dysfunction. Susceptibility-weighted MR imaging may be a useful diagnostic tool as an objective indicator of upper motor neuron dysfunction.
Collapse
|
10
|
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna) 2017; 124:915-964. [PMID: 28378231 PMCID: PMC5514207 DOI: 10.1007/s00702-017-1717-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Roberto De Marzi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Bacchi S, Chim I, Patel S. Specificity and sensitivity of magnetic resonance imaging findings in the diagnosis of progressive supranuclear palsy. J Med Imaging Radiat Oncol 2017; 62:21-31. [DOI: 10.1111/1754-9485.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/11/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Stephen Bacchi
- University of Adelaide; Adelaide South Australia Australia
| | - Ivana Chim
- University of Adelaide; Adelaide South Australia Australia
| | - Sandy Patel
- Royal Adelaide Hospital; Adelaide South Australia Australia
| |
Collapse
|
12
|
Sakurai K, Tokumaru AM, Shimoji K, Murayama S, Kanemaru K, Morimoto S, Aiba I, Nakagawa M, Ozawa Y, Shimohira M, Matsukawa N, Hashizume Y, Shibamoto Y. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy. Neuroradiology 2017; 59:431-443. [DOI: 10.1007/s00234-017-1812-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/19/2017] [Indexed: 01/29/2023]
|
13
|
Shen B, Gao Y, Zhang W, Lu L, Zhu J, Pan Y, Lan W, Xiao C, Zhang L. Resting State fMRI Reveals Increased Subthalamic Nucleus and Sensorimotor Cortex Connectivity in Patients with Parkinson's Disease under Medication. Front Aging Neurosci 2017; 9:74. [PMID: 28420978 PMCID: PMC5378760 DOI: 10.3389/fnagi.2017.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Functional connectivity (FC) between the subthalamic nucleus (STN) and the sensorimotor cortex is increased in off-medication patients with Parkinson's disease (PD). However, the status of FC between STN and sensorimotor cortex in on-medication PD patients remains unclear. In this study, resting state functional magnetic resonance imaging was employed on 31 patients with PD under medication and 31 healthy controls. Two-sample t-test was used to study the change in FC pattern of the STN, the FC strength of the bilateral STN was correlated with overall motor symptoms, while unilateral STN was correlated with offside motor symptoms. Both bilateral and right STN showed increased FC with the right sensorimotor cortex, whereas only right STN FC was correlated with left-body rigidity scores in all PD patients. An additional subgroup analysis was performed according to the ratio of mean tremor scores and mean postural instability and gait difficulty (PIGD) scores, only the PIGD subgroup showed the increased FC between right STN and sensorimotor cortex under medication. Increased FC between the STN and the sensorimotor cortex was found, which was related to motor symptom severity in on-medication PD patients. Anti-PD drugs may influence the hyperdirect pathway to alleviate motor symptoms with the more effect on the tremor subtype.
Collapse
Affiliation(s)
- Bo Shen
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Yang Gao
- Department of Computer Science and Technology, Nanjing UniversityNanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Liyu Lu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Jun Zhu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Yang Pan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Wenya Lan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Chaoyong Xiao
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
14
|
Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, McKeown MJ, Masellis M, Berg D, Rowe JB, Lewis SJG, Williams-Gray CH, Tessitore A, Siebner HR. The role of high-field magnetic resonance imaging in parkinsonian disorders: Pushing the boundaries forward. Mov Disord 2017; 32:510-525. [PMID: 28370449 DOI: 10.1002/mds.26968] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 12/28/2022] Open
Abstract
Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stéphane Lehericy
- Institut du Cerveau et de la Moelle épinière - ICM, Centre de NeuroImagerie de Recherche - CENIR, Sorbonne Universités, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Department of Neurology and Centre for Movement Disorders and Neurorestoration, Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria and Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Oury Monchi
- Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Irena Rektorova
- First Department of Neurology, School of Medicine, St. Anne's University Hospital, Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, istituto di ricovero e cura a carattere scientifico (IRCCS) Hospital San Camillo, Venice and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Martin J McKeown
- Pacific Parkinson's Research Center, Department of Medicine (Neurology), University of British Columbia Vancouver, BC, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University of Kiel and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University, and Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Department of Neurology, Copenhagen University Hospital Bispebjerg, Hvidovre, Denmark
| | | |
Collapse
|