1
|
Farmer AL, Febo M, Wilkes BJ, Lewis MH. Environmental enrichment reduces restricted repetitive behavior by altering gray matter microstructure. PLoS One 2024; 19:e0307290. [PMID: 39083450 PMCID: PMC11290697 DOI: 10.1371/journal.pone.0307290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Restricted, repetitive behaviors are common symptoms in neurodevelopmental disorders including autism spectrum disorder. Despite being associated with poor developmental outcomes, repetitive behaviors remain poorly understood and have limited treatment options. Environmental enrichment attenuates the development of repetitive behaviors, but the exact mechanisms remain obscure. Using the C58 mouse model of repetitive behavior, we performed diffusion tensor imaging to examine microstructural alterations associated with the development of repetitive behavior and its attenuation by environmental enrichment. The C57BL/6 mouse strain, which displays little or no repetitive behavior, was used as a control group. We observed widespread differences in diffusion metrics between C58 mice and C57BL/6 mice. In juvenile C58 mice, repetitive motor behavior displayed strong negative correlations with fractional anisotropy in multiple gray matter regions, whereas in young adult C58 mice, high repetitive motor behavior was most strongly associated with lower fractional anisotropy and higher radial diffusivity in the striatum. Environmental enrichment increased fractional anisotropy and axial diffusivity throughout gray matter regions in the brains of juvenile C58 mice and overlapped predominantly with cerebellar and sensory regions associated with repetitive behavior. Our results suggest environmental enrichment reduces repetitive behavior development by altering gray matter microstructure in the cerebellum, medial entorhinal cortex, and sensory processing regions in juvenile C58 mice. Under standard laboratory conditions, early pathology in these regions appears to contribute to later striatal and white matter dysfunction in adult C58 mice. Future studies should examine the role these regions play in the development of repetitive behavior and the relationship between sensory processing and cerebellar deficits and repetitive behavior.
Collapse
Affiliation(s)
- Anna L. Farmer
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Bradley J. Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Mark H. Lewis
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
3
|
Shen Y, Zhao X, Wang K, Sun Y, Zhang X, Wang C, Yang Z, Feng Z, Zhang X. Exploring White Matter Abnormalities in Young Children with Autism Spectrum Disorder: Integrating Multi-shell Diffusion Data and Machine Learning Analysis. Acad Radiol 2024; 31:2074-2084. [PMID: 38185571 DOI: 10.1016/j.acra.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
RATIONALE AND OBJECTIVES This study employed tract-based spatial statistics (TBSS) to investigate abnormalities in the white matter microstructure among children with autism spectrum disorder (ASD). Additionally, an eXtreme Gradient Boosting (XGBoost) model was developed to effectively classify individuals with ASD and typical developing children (TDC). METHODS AND MATERIALS Multi-shell diffusion weighted images were acquired from 62 children with ASD and 44 TDC. Using the Pydesigner procedure, diffusion tensor (DT), diffusion kurtosis (DK), and white matter tract integrity (WMTI) metrics were computed. Subsequently, TBSS analysis was applied to discern differences in these diffusion parameters between ASD and TDC groups. The XGBoost model was then trained using metrics showing significant differences, and Shapley Additive explanations (SHAP) values were computed to assess the feature importance in the model's predictions. RESULTS TBSS analysis revealed a significant reduction in axonal diffusivity (AD) in the left posterior corona radiata and the right superior corona radiata. Among the DK indicators, mean kurtosis, axial kurtosis, and kurtosis fractional anisotropy were notably increased in children with ASD, with no significant difference in radial kurtosis. WMTI metrics such as axonal water fraction, axonal diffusivity of the extra-axonal space (EAS_AD), tortuosity of the extra-axonal space (EAS_TORT), and diffusivity of intra-axonal space (IAS_Da) were significantly increased, primarily in the corpus callosum and fornix. Notably, there was no significant difference in radial diffusivity of the extra-axial space (EAS_RD). The XGBoost model demonstrated excellent classification ability, and the SHAP analysis identified EAS_TORT as the feature with the highest importance in the model's predictions. CONCLUSION This study utilized TBSS analyses with multi-shell diffusion data to examine white matter abnormalities in pediatric autism. Additionally, the developed XGBoost model showed outstanding performance in classifying ASD and TDC. The ranking of SHAP values based on the XGBoost model underscored the significance of features in influencing model predictions.
Collapse
Affiliation(s)
- Yanyong Shen
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, 100000, PR China (K.W.)
| | - Yongbing Sun
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, 450000, China (Y.S.)
| | - Xiaoxue Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Changhao Wang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Zhexuan Yang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Zhanqi Feng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.)
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.); Henan International Joint Laboratory of Neuroimaging, Zhengzhou, 450052, China (Y.S., X.Z., X.Z., C.W., Z.Y., Z.F., X.Z.).
| |
Collapse
|
4
|
Asschenfeldt B, Evald L, Salvig C, Heiberg J, Østergaard L, Eskildsen SF, Hjortdal VE. Altered Cerebral Microstructure in Adults With Atrial Septal Defect and Ventricular Septal Defect Repaired in Childhood. J Am Heart Assoc 2022; 11:e020915. [PMID: 35699183 PMCID: PMC9238637 DOI: 10.1161/jaha.121.020915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Delayed brain development, brain injury, and neurodevelopmental disabilities are commonly observed in infants operated for complex congenital heart defect. Our previous findings of poorer neurodevelopmental outcomes in individuals operated for simple congenital heart defects calls for further etiological clarification. Hence, we examined the microstructural tissue composition in cerebral cortex and subcortical structures in comparison to healthy controls and whether differences were associated with neurodevelopmental outcomes. Methods and Results Adults (n=62) who underwent surgical closure of an atrial septal defect (n=33) or a ventricular septal defect (n=29) in childhood and a group of healthy, matched controls (n=38) were enrolled. Brain diffusional kurtosis imaging and neuropsychological assessment were performed. Cortical and subcortical tissue microstructure were assessed using mean kurtosis tensor and mean diffusivity and compared between groups and tested for associations with neuropsychological outcomes. Alterations in microstructural tissue composition were found in the parietal, temporal, and occipital lobes in the congenital heart defects, with distinct mean kurtosis tensor cluster‐specific changes in the right visual cortex (pericalcarine gyrus, P=0.002; occipital part of fusiform and lingual gyri, P=0.019). Altered microstructural tissue composition in the subcortical structures was uncovered in atrial septal defects but not in ventricular septal defects. Associations were found between altered cerebral microstructure and social recognition and executive function. Conclusions Children operated for simple congenital heart defects demonstrated altered microstructural tissue composition in the cerebral cortex and subcortical structures during adulthood when compared with healthy peers. Alterations in cerebral microstructural tissue composition were associated with poorer neuropsychological performance. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.
Collapse
Affiliation(s)
- Benjamin Asschenfeldt
- Department of Cardiothoracic & Vascular Surgery Aarhus University Hospital Denmark.,Department of Clinical Medicine Aarhus University Denmark
| | - Lars Evald
- Department of Clinical Medicine Aarhus University Denmark.,Hammel Neurorehabilitation Centre and University Research Clinic Denmark
| | - Camilla Salvig
- Department of Cardiothoracic & Vascular Surgery Aarhus University Hospital Denmark
| | - Johan Heiberg
- Department of Cardiothoracic & Vascular Surgery Aarhus University Hospital Denmark.,Department of Clinical Medicine Aarhus University Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience Aarhus University Denmark.,Department of Clinical Medicine Aarhus University Denmark.,Neuroradiology Research Unit, Department of Radiology Aarhus University Hospital Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience Aarhus University Denmark.,Department of Clinical Medicine Aarhus University Denmark
| | - Vibeke Elisabeth Hjortdal
- Department of Clinical Medicine Aarhus University Denmark.,Department of Cardiothoracic Surgery, Rigshospitalet and Institute of Clinical Medicine University of Copenhagen Denmark
| |
Collapse
|
5
|
Diffusion magnetic resonance tractography-based evaluation of commissural fiber abnormalities in a heparan sulfate endosulfatase-deficient mouse brain. Magn Reson Imaging 2022; 88:123-131. [DOI: 10.1016/j.mri.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022]
|
6
|
Maiter A, Riemer F, Allinson K, Zaccagna F, Crispin-Ortuzar M, Gehrung M, McLean MA, Priest AN, Grist J, Matys T, Graves MJ, Gallagher FA. Investigating the relationship between diffusion kurtosis tensor imaging (DKTI) and histology within the normal human brain. Sci Rep 2021; 11:8857. [PMID: 33893338 PMCID: PMC8065051 DOI: 10.1038/s41598-021-87857-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/26/2021] [Indexed: 01/13/2023] Open
Abstract
Measurements of water diffusion with MRI have been used as a biomarker of tissue microstructure and heterogeneity. In this study, diffusion kurtosis tensor imaging (DKTI) of the brain was undertaken in 10 healthy volunteers at a clinical field strength of 3 T. Diffusion and kurtosis metrics were measured in regions-of-interest on the resulting maps and compared with quantitative analysis of normal post-mortem tissue histology from separate age-matched donors. White matter regions showed low diffusion (0.60 ± 0.04 × 10-3 mm2/s) and high kurtosis (1.17 ± 0.06), consistent with a structured heterogeneous environment comprising parallel neuronal fibres. Grey matter showed intermediate diffusion (0.80 ± 0.02 × 10-3 mm2/s) and kurtosis (0.82 ± 0.05) values. An important finding is that the subcortical regions investigated (thalamus, caudate and putamen) showed similar diffusion and kurtosis properties to white matter. Histological staining of the subcortical nuclei demonstrated that the predominant grey matter was permeated by small white matter bundles, which could account for the similar kurtosis to white matter. Quantitative histological analysis demonstrated higher mean tissue kurtosis and vector standard deviation values for white matter (1.08 and 0.81) compared to the subcortical regions (0.34 and 0.59). Mean diffusion on DKTI was positively correlated with tissue kurtosis (r = 0.82, p < 0.05) and negatively correlated with vector standard deviation (r = -0.69, p < 0.05). This study demonstrates how DKTI can be used to study regional structural variations in the cerebral tissue microenvironment and could be used to probe microstructural changes within diseased tissue in the future.
Collapse
Affiliation(s)
- Ahmed Maiter
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- MMIV, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kieren Allinson
- Department of Pathology, Addenbrooke's Hospital NHS Foundation Trust, Cambridge, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | | | - Marcel Gehrung
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James Grist
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Trillingsgaard Naess-Schmidt E, Udby Blicher J, Møller Thastum M, Ulrikka Rask C, Wulff Svendsen S, Schröder A, Høgh Tuborgh A, Østergaard L, Sangill R, Lund T, Nørhøj Jespersen S, Roer Pedersen A, Hansen B, Fristed Eskildsen S, Feldbaek Nielsen J. Microstructural changes in the brain after long-term post-concussion symptoms: A randomized trial. J Neurosci Res 2020; 99:872-886. [PMID: 33319932 DOI: 10.1002/jnr.24773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
A recent randomized controlled trial in young patients with long-term post-concussion symptoms showed that a novel behavioral intervention "Get going After concussIoN" is superior to enhanced usual care in terms of symptom reduction. It is unknown whether these interventional effects are associated with microstructural brain changes. The aim of this study was to examine whether diffusion-weighted MRI indices, which are sensitive to the interactions between cellular structures and water molecules' Brownian motion, respond differently to the interventions of the above-mentioned trial and whether such differences correlate with the improvement of post-concussion symptoms. Twenty-three patients from the intervention group (mean age 22.8, 18 females) and 19 patients from the control group (enhanced usual care) (mean age 23.9, 14 females) were enrolled. The primary outcome measure was the mean kurtosis tensor, which is sensitive to the microscopic complexity of brain tissue. The mean kurtosis tensor was significantly increased in the intervention group (p = 0.003) in the corpus callosum but not in the thalamus (p = 0.78) and the hippocampus (p = 0.34). An increase in mean kurtosis tensor in the corpus callosum tended to be associated with a reduction in symptoms, but this association did not reach significance (p = 0.059). Changes in diffusion tensor imaging metrics did not differ between intervention groups and were not associated with symptoms. The current study found different diffusion-weighted MRI responses from the microscopic cellular structures of the corpus callosum between patients receiving a novel behavioral intervention and patients receiving enhanced usual care. Correlations with improvement of post-concussion symptoms were not evident.
Collapse
Affiliation(s)
- Erhard Trillingsgaard Naess-Schmidt
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Jakob Udby Blicher
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Mille Møller Thastum
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Charlotte Ulrikka Rask
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Susanne Wulff Svendsen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Schröder
- Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Aarhus, Denmark
| | - Astrid Høgh Tuborgh
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ryan Sangill
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Torben Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Asger Roer Pedersen
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jørgen Feldbaek Nielsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
McKenna F, Miles L, Donaldson J, Castellanos FX, Lazar M. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder. Sci Rep 2020; 10:21465. [PMID: 33293640 PMCID: PMC7722927 DOI: 10.1038/s41598-020-78486-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
Prior ex vivo histological postmortem studies of autism spectrum disorder (ASD) have shown gray matter microstructural abnormalities, however, in vivo examination of gray matter microstructure in ASD has remained scarce due to the relative lack of non-invasive methods to assess it. The aim of this work was to evaluate the feasibility of employing diffusional kurtosis imaging (DKI) to describe gray matter abnormalities in ASD in vivo. DKI data were examined for 16 male participants with a diagnosis of ASD and IQ>80 and 17 age- and IQ-matched male typically developing (TD) young adults 18-25 years old. Mean (MK), axial (AK), radial (RK) kurtosis and mean diffusivity (MD) metrics were calculated for lobar and sub-lobar regions of interest. Significantly decreased MK, RK, and MD were found in ASD compared to TD participants in the frontal and temporal lobes and several sub-lobar regions previously associated with ASD pathology. In ASD participants, decreased kurtosis in gray matter ROIs correlated with increased repetitive and restricted behaviors and poor social interaction symptoms. Decreased kurtosis in ASD may reflect a pathology associated with a less restrictive microstructural environment such as decreased neuronal density and size, atypically sized cortical columns, or limited dendritic arborizations.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - Jeffrey Donaldson
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Khan AR, Hansen B, Danladi J, Chuhutin A, Wiborg O, Nyengaard JR, Jespersen SN. Neurite atrophy in dorsal hippocampus of rat indicates incomplete recovery of chronic mild stress induced depression. NMR IN BIOMEDICINE 2019; 32:e4057. [PMID: 30707463 DOI: 10.1002/nbm.4057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jibrin Danladi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital Risskov, Denmark
| | - Andrey Chuhutin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Ove Wiborg
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging. Proc Natl Acad Sci U S A 2019; 116:4681-4688. [PMID: 30782802 PMCID: PMC6410816 DOI: 10.1073/pnas.1812156116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Delineating cortical microstructure differentiation is important for understanding complicated yet precisely organized patterns in early developing brain. Knowledge of cortical differentiation predominantly from histological studies is limited in localized and discrete cortical regions. We quantified the preterm brain cerebral cortical profile with microstructural complexity [indexed by mean kurtosis (MK)] and microstructural organization [indexed by fractional anisotropy (FA)] from advanced diffusion MRI. Cortical MK and FA maps revealed a heterogeneous maturation signature. Spatiotemporally distinctive disruption of radial glia and decrease of neuronal density among cortical regions were inferred by FA and MK decreases, respectively. These findings suggest that diffusion kurtosis metrics are significant imaging markers for microstructural differentiation of the developmental brain in health and disease. During the third trimester, the human brain undergoes rapid cellular and molecular processes that reshape the structural architecture of the cerebral cortex. Knowledge of cortical differentiation obtained predominantly from histological studies is limited in localized and small cortical regions. How cortical microstructure is differentiated across cortical regions in this critical period is unknown. In this study, the cortical microstructural architecture across the entire cortex was delineated with non-Gaussian diffusion kurtosis imaging as well as conventional diffusion tensor imaging of 89 preterm neonates aged 31–42 postmenstrual weeks. The temporal changes of cortical mean kurtosis (MK) or fractional anisotropy (FA) were heterogeneous across the cortical regions. Cortical MK decreases were observed throughout the studied age period, while cortical FA decrease reached its plateau around 37 weeks. More rapid decreases in MK were found in the primary visual region, while faster FA declines were observed in the prefrontal cortex. We found that distinctive cortical microstructural changes were coupled with microstructural maturation of associated white matter tracts. Both cortical MK and FA measurements predicted the postmenstrual age of preterm infants accurately. This study revealed a differential 4D spatiotemporal cytoarchitectural signature inferred by non-Gaussian diffusion barriers inside the cortical plate during the third trimester. The cytoarchitectural processes, including dendritic arborization and neuronal density decreases, were inferred by regional cortical FA and MK measurements. The presented findings suggest that cortical MK and FA measurements could be used as effective imaging markers for cortical microstructural changes in typical and potentially atypical brain development.
Collapse
|
12
|
Karlsen RH, Einarsen C, Moe HK, Håberg AK, Vik A, Skandsen T, Eikenes L. Diffusion kurtosis imaging in mild traumatic brain injury and postconcussional syndrome. J Neurosci Res 2019; 97:568-581. [PMID: 30675907 PMCID: PMC6590310 DOI: 10.1002/jnr.24383] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Aims of this study were to investigate white matter (WM) and thalamus microstructure 72 hr and 3 months after mild traumatic brain injury (TBI) with diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI), and to relate DKI and DTI findings to postconcussional syndrome (PCS). Twenty-five patients (72 hr = 24; 3 months = 23) and 22 healthy controls were recruited, and DKI and DTI data were analyzed with Tract-Based Spatial Statistics (TBSS) and a region-of-interest (ROI) approach. Patients were categorized into PCS or non-PCS 3 months after injury according to the ICD-10 research criteria for PCS. In TBSS analysis, significant differences between patients and controls were seen in WM, both in the acute stage and 3 months after injury. Fractional anisotropy (FA) reductions were more widespread than kurtosis fractional anisotropy (KFA) reductions in the acute stage, while KFA reductions were more widespread than the FA reductions at 3 months, indicating the complementary roles of DKI and DTI. When comparing patients with PCS (n = 9), without PCS (n = 16), and healthy controls, in the ROI analyses, no differences were found in the acute DKI and DTI metrics. However, near-significant differences were observed for several DKI metrics obtained in WM and thalamus concurrently with symptom assessment (3 months after injury). Our findings indicate a combined utility of DKI and DTI in detecting WM microstructural alterations after mild TBI. Moreover, PCS may be associated with evolving alterations in brain microstructure, and DKI may be a promising tool to detect such changes.
Collapse
Affiliation(s)
- Rune Hatlestad Karlsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Cathrine Einarsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hans Kristian Moe
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|