1
|
Takita H, Doishita S, Yoneda T, Tatekawa H, Abe T, Itoh Y, Horiuchi D, Tsukamoto T, Shimono T, Miki Y. Correlation between Phase-difference-enhanced MR Imaging and Amyloid Positron Emission Tomography: A Study on Alzheimer's Disease Patients and Normal Controls. Magn Reson Med Sci 2022; 22:67-78. [PMID: 35082221 PMCID: PMC9849423 DOI: 10.2463/mrms.mp.2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE While amyloid-β deposition in the cerebral cortex for Alzheimer's disease (AD) is often evaluated by amyloid positron emission tomography (PET), amyloid-β-related iron can be detected using phase difference enhanced (PADRE) imaging; however, no study has validated the association between PADRE imaging and amyloid PET. This study investigated whether the degree of hypointense areas on PADRE imaging correlated with the uptake of amyloid PET. METHODS PADRE imaging and amyloid PET were performed in 8 patients with AD and 10 age-matched normal controls. ROIs in the cuneus, precuneus, superior frontal gyrus (SFG), and superior temporal gyrus (STG) were automatically segmented. The degree of hypointense areas on PADRE imaging in each ROI was evaluated using 4-point scaling of visual assessment or volumetric semiquantitative assessment (the percentage of hypointense volume within each ROI). The mean standardized uptake value ratio (SUVR) of amyloid PET in each ROI was also calculated. The Spearman's correlation coefficient between the 4-point scale of PADRE imaging and SUVR of amyloid PET or between the semiquantitative hypointense volume percentage and SUVR in each ROI was evaluated. RESULTS In the precuneus, a significant positive correlation was identified between the 4-point scale of PADRE imaging and SUVR of amyloid PET (Rs = 0.5; P = 0.034) in all subjects. In the cuneus, a significant positive correlation was identified between the semiquantitative volume percentage of PADRE imaging and SUVR of amyloid PET (Rs = 0.55; P = 0.02) in all subjects. CONCLUSION Amyloid-β-enhancing PADRE imaging can be used to predict the SUVR of amyloid PET, especially in the cuneus and precuneus, and may have the potential to be used for diagnosing AD by detecting amyloid deposition.
Collapse
Affiliation(s)
- Hirotaka Takita
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Satoshi Doishita
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan,Department of Radiology, Saitama Red Cross Hospital, Saitama, Saitama, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Tatekawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan,Corresponding Author: Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Osaka 545-8585, Japan. Phone: +81-6-6645-3831, Fax: +81-6-6646-6655,
| | - Takato Abe
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan,Department of Neurology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Daisuke Horiuchi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Taro Tsukamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Taro Shimono
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Osaka, Japan
| |
Collapse
|
2
|
Doishita S, Sakamoto S, Yoneda T, Uda T, Tsukamoto T, Yamada E, Yoneyama M, Kimura D, Katayama Y, Tatekawa H, Shimono T, Ohata K, Miki Y. Differentiation of Brain Metastases and Gliomas Based on Color Map of Phase Difference Enhanced Imaging. Front Neurol 2018; 9:788. [PMID: 30298047 PMCID: PMC6160550 DOI: 10.3389/fneur.2018.00788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background and objective: Phase difference enhanced imaging (PADRE), a new phase-related MRI technique, can enhance both paramagnetic and diamagnetic substances, and select which phases to be enhanced. Utilizing these characteristics, we developed color map of PADRE (Color PADRE), which enables simultaneous visualization of myelin-rich structures and veins. Our aim was to determine whether Color PADRE is sufficient to delineate the characteristics of non-gadolinium-enhancing T2-hyperintense regions related with metastatic tumors (MTs), diffuse astrocytomas (DAs) and glioblastomas (GBs), and whether it can contribute to the differentiation of MTs from GBs. Methods: Color PADRE images of 11 patients with MTs, nine with DAs and 17 with GBs were created by combining tissue-enhanced, vessel-enhanced and magnitude images of PADRE, and then retrospectively reviewed. First, predominant visibility of superficial white matter and deep medullary veins within non-gadolinium-enhancing T2-hyperintense regions were compared among the three groups. Then, the discriminatory power to differentiate MTs from GBs was assessed using receiver operating characteristic analysis. Results: The degree of visibility of superficial white matter was significantly better in MTs than in GBs (p = 0.017), better in GBs than in DAs (p = 0.014), and better in MTs than in DAs (p = 0.0021). On the contrary, the difference in the visibility of deep medullary veins was not significant (p = 0.065). The area under the receiver operating characteristic curve to discriminate MTs from GBs was 0.76 with a sensitivity of 80% and specificity of 64%. Conclusion: Visibility of superficial white matter on Color PADRE reflects inferred differences in the proportion of vasogenic edema and tumoral infiltration within non-gadolinium-enhancing T2-hyperintense regions of MTs, DAs and GBs. Evaluation of peritumoral areas on Color PADRE can help to distinguish MTs from GBs.
Collapse
Affiliation(s)
- Satoshi Doishita
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinichi Sakamoto
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Taro Tsukamoto
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Yamada
- Department of Radiological Technology, Osaka City University Hospital, Osaka, Japan
| | | | - Daisuke Kimura
- Department of Radiological Technology, Osaka City University Hospital, Osaka, Japan
| | - Yutaka Katayama
- Department of Radiological Technology, Osaka City University Hospital, Osaka, Japan
| | - Hiroyuki Tatekawa
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Taro Shimono
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|