1
|
Cheng SH, Lee SY, Lee HH. Harnessing the Power of Radiotherapy for Lung Cancer: A Narrative Review of the Evolving Role of Magnetic Resonance Imaging Guidance. Cancers (Basel) 2024; 16:2710. [PMID: 39123438 PMCID: PMC11311467 DOI: 10.3390/cancers16152710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Compared with computed tomography (CT), magnetic resonance imaging (MRI) traditionally plays a very limited role in lung cancer management, although there is plenty of room for improvement in the current CT-based workflow, for example, in structures such as the brachial plexus and chest wall invasion, which are difficult to visualize with CT alone. Furthermore, in the treatment of high-risk tumors such as ultracentral lung cancer, treatment-associated toxicity currently still outweighs its benefits. The advent of MR-Linac, an MRI-guided radiotherapy (RT) that combines MRI with a linear accelerator, could potentially address these limitations. Compared with CT-based technologies, MR-Linac could offer superior soft tissue visualization, daily adaptive capability, real-time target tracking, and an early assessment of treatment response. Clinically, it could be especially advantageous in the treatment of central/ultracentral lung cancer, early-stage lung cancer, and locally advanced lung cancer. Increasing demands for stereotactic body radiotherapy (SBRT) for lung cancer have led to MR-Linac adoption in some cancer centers. In this review, a broad overview of the latest research on imaging-guided radiotherapy (IGRT) with MR-Linac for lung cancer management is provided, and development pertaining to artificial intelligence is also highlighted. New avenues of research are also discussed.
Collapse
Affiliation(s)
- Sarah Hsin Cheng
- Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shao-Yun Lee
- Department of Medical Education, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsin-Hua Lee
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Nakamura H, Hirai T, Kurosawa H, Hamada K, Matsunaga K, Shimizu K, Konno S, Muro S, Fukunaga K, Nakano Y, Kuwahira I, Hanaoka M. Current advances in pulmonary functional imaging. Respir Investig 2024; 62:49-65. [PMID: 37948969 DOI: 10.1016/j.resinv.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 11/12/2023]
Abstract
Recent advances in imaging analysis have enabled evaluation of ventilation and perfusion in specific regions by chest computed tomography (CT) and magnetic resonance imaging (MRI), in addition to modalities including dynamic chest radiography, scintigraphy, positron emission tomography (PET), ultrasound, and electrical impedance tomography (EIT). In this review, an overview of current functional imaging techniques is provided for each modality. Advances in chest CT have allowed for the analysis of local volume changes and small airway disease in addition to emphysema, using the Jacobian determinant and parametric response mapping with inspiratory and expiratory images. Airway analysis can reveal characteristics of airway lesions in chronic obstructive pulmonary disease (COPD) and bronchial asthma, and the contribution of dysanapsis to obstructive diseases. Chest CT is also employed to measure pulmonary blood vessels, interstitial lung abnormalities, and mediastinal and chest wall components including skeletal muscle and bone. Dynamic CT can visualize lung deformation in respective portions. Pulmonary MRI has been developed for the estimation of lung ventilation and perfusion, mainly using hyperpolarized 129Xe. Oxygen-enhanced and proton-based MRI, without a polarizer, has potential clinical applications. Dynamic chest radiography is gaining traction in Japan for ventilation and perfusion analysis. Single photon emission CT can be used to assess ventilation-perfusion (V˙/Q˙) mismatch in pulmonary vascular diseases and COPD. PET/CT V˙/Q˙ imaging has also been demonstrated using "Galligas". Both ultrasound and EIT can detect pulmonary edema caused by acute respiratory distress syndrome. Familiarity with these functional imaging techniques will enable clinicians to utilize these systems in clinical practice.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Kurosawa
- Center for Environmental Conservation and Research Safety and Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Kuwahira
- Division of Pulmonary Medicine, Department of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
3
|
Khan S, Vasudevan S. Biomedical instrumentation of photoacoustic imaging and quantitative sensing for clinical applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:091502. [PMID: 37747328 DOI: 10.1063/5.0151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Photoacoustic (PA) imaging has been well researched over the last couple of decades and has found many applications in biomedical engineering. This has evinced interest among many scientists in developing this as a compact instrument for biomedical diagnosis. This review discusses various instrumentation developments for PA experimental setups and their applications in the biomedical diagnostic field. It also covers the PA spectral response or PA sensing technique, which uses the spectral information of the PA signal and performs sensing to deliver a fast, cost-effective, and compact screening tool instead of imaging. Primarily, this review provides an overview of PA imaging concepts and the development of hardware instrumentation systems in both the excitation and acquisition stages of this technique. Later, the paper discusses PA sensing, the quantitative spectral parameter extraction from the PA spectrum, and the correlation study of the spectral parameters with the physical parameters of the tissue. This PA sensing technique was used to diagnose various diseases, such as thyroid nodules, breast cancer, renal disorders, and zoonotic diseases, based on the mechanical and biological characteristics of the tissues. The paper culminates with a discussion section that provides future developments that are necessary to take this technique into clinical applications as a quantitative PA imaging technique.
Collapse
Affiliation(s)
- S Khan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| | - S Vasudevan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
4
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
5
|
Ohno Y, Yui M, Yamamoto K, Takenaka D, Koyama H, Nagata H, Ueda T, Ikeda H, Ozawa Y, Toyama H, Yoshikawa T. Chemical Exchange Saturation Transfer MRI: Capability for Predicting Therapeutic Effect of Chemoradiotherapy on Non-Small Cell Lung Cancer Patients. J Magn Reson Imaging 2023; 58:174-186. [PMID: 36971493 DOI: 10.1002/jmri.28691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Amide proton transfer (APT) weighted chemical exchange saturation transfer CEST (APTw/CEST) magnetic resonance imaging (MRI) has been suggested as having the potential for assessing the therapeutic effect of brain tumors or rectal cancer. Moreover, diffusion-weighted imaging (DWI) and positron emission tomography fused with computed tomography by means of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG-PET/CT) have been suggested as useful in same setting. PURPOSE To compare the capability of APTw/CEST imaging, DWI, and FDG-PET/CT for predicting therapeutic effect of chemoradiotherapy (CRT) on stage III non-small cell lung cancer (NSCLC) patients. STUDY TYPE Prospective. POPULATION Eighty-four consecutive patients with Stage III NSCLC, 45 men (age range, 62-75 years; mean age, 71 years) and 39 women (age range, 57-75 years; mean age, 70 years). All patients were then divided into two groups (Response Evaluation Criteria in Solid Tumors [RECIST] responders, consisting of the complete response and partial response groups, and RECIST non-responders, consisting of the stable disease and progressive disease groups). FIELD STRENGTH/SEQUENCE 3 T, echo planar imaging or fast advanced spin-echo (FASE) sequences for DWI and 2D half Fourier FASE sequences with magnetization transfer pulses for CEST imaging. ASSESSMENT Magnetization transfer ratio asymmetry (MTRasym ) at 3.5 ppm, apparent diffusion coefficient (ADC), and maximum standard uptake value (SUVmax, ) on PET/CT were assessed by means of region of interest (ROI) measurements at primary tumor. STATISTICAL TESTS Kaplan-Meier method followed by log-rank test and Cox proportional hazards regression analysis with multivariate analysis. A P value <0.05 was considered statistically significant. RESULTS Progression-free survival (PFS) and overall survival (OS) had significant difference between two groups. MTRasym at 3.5 ppm (hazard ratio [HR] = 0.70) and SUVmax (HR = 1.41) were identified as significant predictors for PFS. Tumor staging (HR = 0.57) was also significant predictors for OS. DATA CONCLUSION APTw/CEST imaging showed potential performance as DWI and FDG-PET/CT for predicting the therapeutic effect of CRT on stage III NSCLC patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Daisuke Takenaka
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Hisanobu Koyama
- Department of Radiology, Osaka Police Hospital, Osaka, Japan
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeshi Yoshikawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| |
Collapse
|
6
|
Volumetric Analysis of Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Predicting the Response to Chemotherapy in Patients With Locally Advanced Non-Small Cell Lung Cancer. J Comput Assist Tomogr 2022; 46:406-412. [PMID: 35405718 DOI: 10.1097/rct.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to prospectively investigate intravoxel incoherent motion parameters to predict the response to chemotherapy in locally advanced non-small cell lung cancer (NSCLC) patients. METHODS From July 2016 to March 2018, 30 advanced NSCLC patients were enrolled and underwent chest intravoxel incoherent motion-diffusion-weighted imaging at Siemens 3T magnetic resonance imaging before and at the end of the first cycle of chemotherapy. Regions of interest were drawn including the whole tumor volume to derive the apparent diffusion coefficient value, D, D*, and f, respectively. Time-dependent receiver operating characteristic curves were generated to evaluate the cutoff values of continuous variables. A Cox proportional hazards model was used to assess the independent predictors of progression-free survival (PFS) and overall survival (OS). Kaplan-Meier curves and log-rank test were generated. RESULTS Among the 30 patients, 28 cases (93.3%) died and 2 cases (6.7%) survived till the closeout date. Univariate Cox regression analyses revealed that the significant predictors of PFS and OS were the tumor size reduction rate, the change rates of D and apparent diffusion coefficient values, and the D value before therapy (PFS: P = 0.015, hazard ratio [HR] = 2.841; P < 0.001, HR = 5.840; P = 0.044, HR = 2.457; and P = 0.027, HR = 2.715; OS: P = 0.008, HR = 2.987; P < 0.001, HR = 4.357; P = 0.006, HR = 3.313; and P = 0.013, HR = 2.941, respectively). Multivariate Cox regression analysis suggested that △D% was identified as independent predictors of both PFS and OS (P = 0.003, HR = 9.200 and P = 0.016, HR = 4.617). In addition, the cutoff value of △D% was 21.06% calculated by receiver operating characteristic curve analysis. In the Kaplan-Meier analysis, the PFS and OS were significantly greater in the group of patients with △D% larger than 21.06% (log-rank test, χ2 = 16.453, P < 0.001; χ2 = 13.952, P < 0.001). CONCLUSIONS Intravoxel incoherent motion-diffusion-weighted imaging was preferred for predicting the prognosis of advanced NSCLC patients treated with chemotherapy. A D increase more than 21.06% at 1 month was associated with a lower rate of disease progression and death.
Collapse
|
7
|
Chang R, Qi S, Yue Y, Zhang X, Song J, Qian W. Predictive Radiomic Models for the Chemotherapy Response in Non-Small-Cell Lung Cancer based on Computerized-Tomography Images. Front Oncol 2021; 11:646190. [PMID: 34307127 PMCID: PMC8293296 DOI: 10.3389/fonc.2021.646190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
The heterogeneity and complexity of non-small cell lung cancer (NSCLC) tumors mean that NSCLC patients at the same stage can have different chemotherapy prognoses. Accurate predictive models could recognize NSCLC patients likely to respond to chemotherapy so that they can be given personalized and effective treatment. We propose to identify predictive imaging biomarkers from pre-treatment CT images and construct a radiomic model that can predict the chemotherapy response in NSCLC. This single-center cohort study included 280 NSCLC patients who received first-line chemotherapy treatment. Non-contrast CT images were taken before and after the chemotherapy, and clinical information were collected. Based on the Response Evaluation Criteria in Solid Tumors and clinical criteria, the responses were classified into two categories: response (n = 145) and progression (n = 135), then all data were divided into two cohorts: training cohort (224 patients) and independent test cohort (56 patients). In total, 1629 features characterizing the tumor phenotype were extracted from a cube containing the tumor lesion cropped from the pre-chemotherapy CT images. After dimensionality reduction, predictive models of the chemotherapy response of NSCLC with different feature selection methods and different machine-learning classifiers (support vector machine, random forest, and logistic regression) were constructed. For the independent test cohort, the predictive model based on a random-forest classifier with 20 radiomic features achieved the best performance, with an accuracy of 85.7% and an area under the receiver operating characteristic curve of 0.941 (95% confidence interval, 0.898–0.982). Of the 20 selected features, four were first-order statistics of image intensity and the others were texture features. For nine features, there were significant differences between the response and progression groups (p < 0.001). In the response group, three features, indicating heterogeneity, were overrepresented and one feature indicating homogeneity was underrepresented. The proposed radiomic model with pre-chemotherapy CT features can predict the chemotherapy response of patients with non-small cell lung cancer. This radiomic model can help to stratify patients with NSCLC, thereby offering the prospect of better treatment.
Collapse
Affiliation(s)
- Runsheng Chang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yong Yue
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiangdian Song
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|