1
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Suzuki Y, Sugimoto K, Yoshida Y, Kuroda H, Kamada Y, Sumida Y, Ito T, Akita T, Tanaka J. Severe hepatic steatosis promotes increased liver stiffness in the early stages of metabolic dysfunction-associated steatotic liver disease. Liver Int 2024; 44:1700-1714. [PMID: 38558221 DOI: 10.1111/liv.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND & AIMS The predictors of progression from steatosis to more advanced stages of metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. We evaluated the association between the quantity of hepatic steatosis and longitudinal changes in liver stiffness measurements (LSMs) using magnetic resonance elastography (MRE) in patients with MASLD. METHODS We retrospectively analysed patients with MASLD who underwent at least two serial MRE and magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) examinations at least 1 year apart. Fine-Gray competitive proportional hazard regression was used to identify LSM progression and regression factors. RESULTS A total of 471 patients were enrolled. Factors linked to LSM progression were steatosis grade 3 (MRI-PDFF ≥17.1%, adjusted hazard ratio [aHR] 2.597; 95% confidence interval [CI] 1.483-4.547) and albumin-bilirubin grade 2 or 3 (aHR 2.790; 95% CI 1.284-6.091), while the only factor linked to LSM regression was % decrease rate of MRI-PDFF ≥5% (aHR 2.781; 95% CI 1.584-4.883). Steatosis grade 3 correlated with a higher incidence rate of LSM progression than steatosis grade 1 (MRI-PDFF <11.3%) in patients with LSM stage 0 (<2.5 kilopascal [kPa]), and a % annual decrease rate of MRI-PDFF ≥5% correlated with a higher incidence rate of LSM regression than that of MRI-PDFF >-5% and <5% in patients with LSM stage 1 or 2-4 (≥2.5 kPa). CONCLUSIONS Severe hepatic steatosis was linked to significant LSM progression in patients with MASLD and low LSM (<2.5 kPa).
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshio Sumida
- Department of Healthcare Management, International University of Health and Welfare, Tokyo, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
2
|
Kumada T, Toyoda H, Ogawa S, Gotoh T, Suzuki Y, Imajo K, Sugimoto K, Kakegawa T, Kuroda H, Yasui Y, Tamaki N, Kurosaki M, Izumi N, Akita T, Tanaka J, Nakajima A. Advanced fibrosis leads to overestimation of steatosis with quantitative ultrasound in individuals without hepatic steatosis. Ultrasonography 2024; 43:121-131. [PMID: 38316132 PMCID: PMC10915114 DOI: 10.14366/usg.23194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
PURPOSE The effect of hepatic fibrosis stage on quantitative ultrasound based on the attenuation coefficient (AC) for liver lipid quantification is controversial. The objective of this study was to determine how the degree of fibrosis assessed by magnetic resonance (MR) elastography affects AC based on the ultrasound-guided attenuation parameter according to the grade of hepatic steatosis, using magnetic resonance imaging (MRI)-derived proton density fat fraction (MRIderived PDFF) as the reference standard. METHODS Between February 2020 and April 2021, 982 patients with chronic liver disease who underwent AC and MRI-derived PDFF measurement as well as MR elastography were enrolled. Multiple regression was used to investigate whether AC was affected by the degree of liver stiffness. RESULTS AC increased as liver stiffness progressed in 344 patients without hepatic steatosis (P=0.009). In multivariable analysis, AC was positively correlated with skin-capsule distance (P<0.001), MR elastography value (P=0.037), and MRI-derived PDFF (P<0.001) in patients without hepatic steatosis. In 52 of 982 patients (5%), the correlation between AC and MRIderived PDFF fell outside the 95% confidence interval for the regression line slope. Patients with MRI-derived PDFF lower than their AC (n=36) had higher fibrosis-4 scores, albumin-bilirubin scores, and MR elastography values than patients with MRI-derived PDFF greater than their AC (n=16; P=0.018, P=0.001, and P=0.011, respectively). CONCLUSION AC is affected by liver fibrosis (MR elastography value ≥6.7 kPa) only in patients without hepatic steatosis (MRI-derived PDFF <5.2%). These values should be interpreted with caution in patients with advanced liver fibrosis.
Collapse
Affiliation(s)
- Takashi Kumada
- Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Sadanobu Ogawa
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tatsuya Gotoh
- Department of Imaging Diagnosis, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuaki Suzuki
- Department of Gastroenterology, Nayoro City General Hospital, Nayoro, Japan
| | - Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Gastroenterology, Shin-yurigaoka General Hospital, Kawasaki, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino-shi, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, Fujita S, Fushimi Y, Fujima N, Matsui Y, Tatsugami F, Nozaki T, Fujioka T, Yanagawa M, Tsuboyama T, Kawamura M, Naganawa S. Clinical applications of artificial intelligence in liver imaging. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01638-1. [PMID: 37165151 DOI: 10.1007/s11547-023-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review outlines the current status and challenges of the clinical applications of artificial intelligence in liver imaging using computed tomography or magnetic resonance imaging based on a topic analysis of PubMed search results using latent Dirichlet allocation. LDA revealed that "segmentation," "hepatocellular carcinoma and radiomics," "metastasis," "fibrosis," and "reconstruction" were current main topic keywords. Automatic liver segmentation technology using deep learning is beginning to assume new clinical significance as part of whole-body composition analysis. It has also been applied to the screening of large populations and the acquisition of training data for machine learning models and has resulted in the development of imaging biomarkers that have a significant impact on important clinical issues, such as the estimation of liver fibrosis, recurrence, and prognosis of malignant tumors. Deep learning reconstruction is expanding as a new technological clinical application of artificial intelligence and has shown results in reducing contrast and radiation doses. However, there is much missing evidence, such as external validation of machine learning models and the evaluation of the diagnostic performance of specific diseases using deep learning reconstruction, suggesting that the clinical application of these technologies is still in development.
Collapse
Affiliation(s)
- Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima City, Hiroshima, Japan
| | - Taiki Nozaki
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|