McBeath MK, Tang TY, Shaffer DM. The geometry of consciousness.
Conscious Cogn 2018;
64:207-215. [PMID:
30031669 DOI:
10.1016/j.concog.2018.04.015]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
Conscious experience implies a reference-frame or vantage, which is often important in scientific models. Control models of ball-interception are used as an example. Models that use viewer-dependent egocentric reference-frames are contrasted with viewer-independent allocentric ones. Allocentric reference-frames serve well for models like Newtonian physics, which utilize static coordinate-systems that allow forces and object-movements to be compartmentalized. In contrast, egocentric reference-frames are natural for modeling mobile organisms or robots when controlling perception-action behavior. Lower-level perception-action behavior is often characterized using egocentric coordinate-systems that optimize processing-speed, while higher-level cognitive-processes use allocentric frames that provide a stationary spatial reference. Brain-behavior models like the Ventral-Stream What System, and Dorsal-Stream Where-How System, also respectively utilize allocentric and egocentric reference-frames. Reference-frame clarification can resolve disputes about models of control-tasks like running to catch baseballs, and can provide insights for biomimetic-robots. Confusion regarding geometry and reference-frames contributes to a lack of clarity between how and when egocentric versus allocentric geometries are imposed, with perception-actions generally being more egocentric and conscious experience more allocentric.
Collapse