1
|
Kumar A, Singh N, Joshi R. Deciphering the metabolic signatures of Trigonella microgreens as a function of photoperiod and temperature using targeted compound analysis and non-targeted UHPLC-QTOF-IMS based approach. Food Res Int 2024; 176:113834. [PMID: 38163730 DOI: 10.1016/j.foodres.2023.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Trigonella foenum-graecum L. (Fenugreek) is an annual herb that belongs to Fabaceae family. The compositional make-up of microgreens depends on prevailing environmental conditions. So, Trigonella microgreens were cultivated under different photoperiod and temperature conditions and evaluated for plant height, total chlorophyll content (TCC), targeted compound analysis and non-targeted UHPLC-QTOF-IMS based metabolomic profile. The plant height and TCC of Trigonella microgreens increased by approximately 22 % and 20 %, respectively under T1 conditions (longer photoperiod of 22 h with 22 °C in light and 17 °C in dark). The targeted phenolic profile analysis revealed the dominant presence of gallic acid, p-coumaric acid and apigenin in Trigonella microgreens. Also, the concentration of p-coumaric acid concentration raised from 3.51 mg/g to 5.83 mg/g as a response of T1 conditions. The sugar profile revealed augmented concentration of myo-inositol, glucose, fructose, xylose, maltose, and sucrose in longer photoperiod with T1 conditions. The microgreens were also rich in amino acids like aspartic acid, glutamic acid, leucine, isoleucine, and phenylalanine. Notably, the concentration of proline increased from 10.40 mg/g to 16.92 mg/g as a response to T1 growth conditions. The concentration of these metabolites varied significantly under different photoperiod and temperature conditions. The comprehensive non-targeted UHPLC-QTOF-IMS analysis of microgreens revealed different class of metabolites like organic compounds, alkaloids, coumarin-derivatives, phenolic and flavonoid derivatives, terpenoids, sugars, amino acids and few nucleic acid derivatives. The multivariate PLS-DA explained different expression level of metabolites under different growing conditions. The T1 growing condition resulted in the increased biosynthesis of phenolic compounds and various metabolites. The expression level of terpenoid derivatives specifically of Trigonelloside C and Trigoneoside XIIa/b increased under T1 conditions. The substantial alteration in the metabolites due to growing conditions may alter the microgreen's dietary benefits. So, additional research may be warranted.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun 248002, India.
| | - Robin Joshi
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania (UPenn), Philadelphia, PA 19104, USA; Biotechnology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India.
| |
Collapse
|
2
|
Shalayel MHF, Al-Mazaideh GM, Alanezi AA, Almuqati AF, Alotaibi M. Diosgenin and Monohydroxy Spirostanol from Prunus amygdalus var amara Seeds as Potential Suppressors of EGFR and HER2 Tyrosine Kinases: A Computational Approach. Pharmaceuticals (Basel) 2023; 16:704. [PMID: 37242487 PMCID: PMC10223344 DOI: 10.3390/ph16050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer continues to be leading cause of death globally, with nearly 7 million deaths per year. Despite significant progress in cancer research and treatment, there remain several challenges to overcome, including drug resistance, the presence of cancer stem cells, and high interstitial fluid pressure in tumors. To tackle these challenges, targeted therapy, specifically targeting HER2 (Human Epidermal Growth Factor Receptor 2) as well as EGFR (Epidermal Growth Factor Receptor), is considered a promising approach in cancer treatment. In recent years, phytocompounds have gained recognition as a potential source of chemopreventive and chemotherapeutic agents in tumor cancer treatment. Phytocompounds are compounds derived from medicinal plants that have the potential to treat and prevent cancer. This study aimed to investigate phytocompounds from Prunus amygdalus var amara seeds as inhibitors against EGFR and HER2 enzymes using in silico methods. In this study, fourteen phytocompounds were isolated from Prunus amygdalus var amara seeds and subjected to molecular docking studies to determine their ability to bind to EGFR and HER2 enzymes. The results showed that diosgenin and monohydroxy spirostanol exhibited binding energies comparable to those of the reference drugs, tak-285, and lapatinib. Furthermore, the drug-likeness and ADMET predictions, performed using the admetSAR 2.0 web-server tool, suggested that diosgenin and monohydroxy spirostanol have similar safety and ADMET properties as the reference drugs. To get deeper insight into the structural steadiness and flexibility of the complexes formed between these compounds and theEGFR and HER2 proteins, molecular dynamics simulations were performed for 100 ns. The results showed that the hit phytocompounds did not significantly affect the stability of the EGFR and HER2 proteins and were able to form stable interactions with the catalytic binding sites of the proteins. Additionally, the MM-PBSA analysis revealed that the binding free energy estimates for diosgenin and monohydroxy spirostanol is comparable to the reference drug, lapatinib. This study provides evidence that diosgenin and monohydroxy spirostanol may have the potential to act as dual suppressors of EGFR and HER2. Additional in vivo and in vitro research are needed to certify these results and assess their efficacy and safety as cancer therapy agents. The experimental data reported and these results are in agreement.
Collapse
Affiliation(s)
- Mohammed Helmy Faris Shalayel
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Ghassab M. Al-Mazaideh
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| |
Collapse
|
3
|
Gonda S, Szűcs Z, Plaszkó T, Cziáky Z, Kiss-Szikszai A, Sinka D, Bácskay I, Vasas G. Quality-controlled LC-ESI-MS food metabolomics of fenugreek (Trigonella foenum-graecum) sprouts: Insights into changes in primary and specialized metabolites. Food Res Int 2023; 164:112347. [PMID: 36737938 DOI: 10.1016/j.foodres.2022.112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is an important food and spice with bioactive compounds against diabetes. In this study, fenugreek seeds germinating in darkness for 72 h were studied using quantification of trigonelline and 4-hydroxyisoleucine and an LC-ESI-MS/MS-based metabolomic approach capable of accurately estimating 237 features from various primary and specialized compound classes. During germination, the concentrations of trigonelline and 4-hydroxyisoleucine rose by 33.5% and 33.3%, respectively. At the same time, untargeted metabolomics revealed 9 putative flavonoids increasing 1.19- to 2.77-fold compared to the dormant seeds. A set of 19 steroid saponins rose by 1.08- to 31.86-fold. Primary metabolites however showed much more variability: abundance changes in amino acid derivatives, peptides and saccharides fell in the 0.09- to 22.25-fold, 0.93- to 478.79-fold and 0.36- to 941.58-fold ranges, respectively. To increase biosynthesis of specialized metabolites during germination, sprouts were exposed to 1-100 mM methyl jasmonate (MeJA) and methyl salicylate (MeSA). The hormone treatments affected normal metabolism: 67.1-83.1 % and 64.1-83.5 % of compounds showed a reduction compared to the controls in 100 mM MeJA and MeSA treatments at different sampling time points. Contrary to expectations, the abundance of flavonoids decreased, compared to the control sprouts (0.75- and 0.68-fold change medians, respectively). The same was observed for most, but not all steroid saponins. The quality-controlled untargeted metabolomics approach proved to yield excellent insight into the metabolic changes during germination of fenugreek. The results suggest that although fenugreek germination causes major shifts in plant metabolism, there are no major qualitative changes in bioactive specialized metabolites during the first three days. This stability likely translates into good bioactivity that is similar to that of the seeds. Because the large changes in the primary metabolites likely alter the nutritive value of the seed, further studies are warranted.
Collapse
Affiliation(s)
- Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- University of Nyíregyháza, Agricultural and Molecular Research and Service Institute, 4400 Nyíregyháza, Sóstói út 31/b, Hungary
| | - Attila Kiss-Szikszai
- University of Debrecen, Department of Organic Chemistry, H-4010 Debrecen, Egyetem tér 1, Hungary
| | - Dávid Sinka
- University of Debrecen, Department of Pharmaceutical Technology, H-4032, Nagyerdei körút 98, Hungary
| | - Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, 4032 Debrecen, Hungary; University of Debrecen, Department of Pharmaceutical Technology, H-4032, Nagyerdei körút 98, Hungary
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Schreiner T, Dias MM, Barreiro MF, Pinho SP. Saponins as Natural Emulsifiers for Nanoemulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6573-6590. [PMID: 35621387 PMCID: PMC9776534 DOI: 10.1021/acs.jafc.1c07893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The awareness of sustainability approaches has focused attention on replacing synthetic emulsifiers with natural alternatives when formulating nanoemulsions. In this context, a comprehensive review of the different types of saponins being successfully used to form and stabilize nanoemulsions is presented, highlighting the most common natural sources and biosynthetic routes. Processes for their extraction and purification are also reviewed altogether with the recent advances for their characterization. Concerning the preparation of the nanoemulsions containing saponins, the focus has been initially given to screening methods, lipid phase used, and production procedures, but their characterization and delivery systems explored are also discussed. Most experimental outcomes showed that the saponins present high performance, but the challenges associated with the saponins' broader application, mainly the standardization for industrial use, are identified. Future perspectives report, among others, the emerging biotechnological processes and the use of byproducts in a circular economy context.
Collapse
Affiliation(s)
- Tatiana
B. Schreiner
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena M. Dias
- LSRE-LCM
- Laboratory of Separation and Reaction Engineering – Laboratory
of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa
Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Formulation, Characterization and Permeability Studies of Fenugreek ( Trigonella foenum-graecum) Containing Self-Emulsifying Drug Delivery System (SEDDS). Molecules 2022; 27:molecules27092846. [PMID: 35566198 PMCID: PMC9104395 DOI: 10.3390/molecules27092846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Fenugreek is used as a spice and a traditional herbal medicine for a variety of purposes, given its antidiabetic and antioxidant effects. Self-emulsifying drug delivery systems (SEDDS) of herbal drugs are targets of extensive research aiming to increase bioavailability and stability. The study’s objective was to formulate SEDDS containing Trigonella foenum-graecum extract to improve the stability of herbal extract and to increase their permeability through a Caco-2 monolayer. A characterized fenugreek dry extract was used for the formulations, while the SEDDS properties were examined by particle size analysis and zeta potential measurements. Permeability assays were carried out on Caco-2 cell monolayers, the integrity of which was monitored by follow-up trans-epithelial electric resistance measurements (TEER). Cytocompatibility was tested by the MTT method, and an indirect dissolution test was performed, using DPPH antioxidant reagent. Two different SEDDS compositions were formulated from a standardized fenugreek dry extract at either the micro- or the nanoemulsion scale with sufficient stability, enhanced bioavailability of the compounds, and sustained release from HPMC capsules. Based on our results, a modern, non-toxic, cytocompatible fenugreek SEDDS formulation with high antioxidant capacity was developed in order to improve the permeability and bioavailability of all components.
Collapse
|
6
|
Kandil NH, Ayoub IM, El-Ahmady SH, El-Moghazy SA. Advances in the quality control of fenugreek seeds using chromatographic, spectroscopic and DNA-based techniques: A comprehensive review. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:155-169. [PMID: 34672396 DOI: 10.1002/pca.3091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Fenugreek has been used in traditional remedies since ancient times. It has a long history of use against medical ailments as an antidiabetic, anticarcinogenic, hypocholesterolemic, antioxidant, antibacterial, hypoglycemic, gastric stimulant, and anti-anorexia agent. The major active constituents include alkaloids, fibres, saponins, proteins, and amino acids. OBJECTIVES To provide a comprehensive overview of the application of chromatographic and spectroscopic methods, in addition to DNA-profiling methods to assess the quality of fenugreek. Also, to highlight the recent application of chemometrics combined with quality control methods during the last two decades. METHODOLOGY A literature search conducted from January 2000 up to December 2020 using various scientific databases (e.g., Scopus, Medline, PubMed, EBSCO, JSTOR, ScienceDirect, Google Scholar, Web of Science and Egyptian Knowledge Bank, Academic Journals, and Springer Link); general web searches were also undertaken using Google applying some related search terms. Studies involving the application of quality control analyses were classified into three categories according to the conducted analysis method including chromatographic [high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), and gas chromatography (GC)], spectroscopic [ultraviolet (UV), infrared (IR), and nuclear magnetic resonance (NMR)], and DNA-based markers. RESULTS This review shed the light on relevant studies covering the past two decades, presenting the application of spectroscopic and chromatographic methods and DNA profiling in the quality control of fenugreek. CONCLUSION The reviewed chromatographic and spectroscopic methods combined with chemometrics provide a powerful tool that could be applied widely for the quality control of fenugreek.
Collapse
Affiliation(s)
- Nariman H Kandil
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Safaa A El-Moghazy
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| |
Collapse
|
7
|
Khoja KK, Howes MJR, Hider R, Sharp PA, Farrell IW, Latunde-Dada GO. Cytotoxicity of Fenugreek Sprout and Seed Extracts and Their Bioactive Constituents on MCF-7 Breast Cancer Cells. Nutrients 2022; 14:nu14040784. [PMID: 35215434 PMCID: PMC8879394 DOI: 10.3390/nu14040784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
Trigonella foenum-graecum L. (fenugreek), a member of the legume family (Fabaceae), is a promising source of bioactive phytochemicals, which explains its traditional use for a variety of metabolic disorders including cancer. The current study aimed to evaluate extracts of fenugreek seeds and sprouts, and some of their constituents, to compare their cytotoxic and antiproliferative activities in MCF-7 breast cancer cells. The extracts were chemically characterised using high-resolution accurate mass liquid chromatography-mass spectrometry to reveal the detection of compounds assigned as flavone C-glycosides including those derived from apigenin and luteolin, in addition to isoflavones. Five different flavones or their glycosides (apigenin, vicenin-2, vitexin, luteolin and orientin) and two isoflavones (daidzein and formononetin) were quantified in the fenugreek extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using MCF-7 cells treated with fenugreek methanolic extracts showed dose- and time-dependent effects on cell viability. The MCF-7 cancer cells treated with the fenugreek methanolic extracts also displayed increased relative mitochondrial DNA damage as well as suppressed metastasis and proliferation. This study demonstrates the potential anti-cancer effects of fenugreek seeds and sprouts and reveals fenugreek sprouts as an untapped resource for bioactive compounds.
Collapse
Affiliation(s)
- Kholoud K. Khoja
- Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK; (K.K.K.); (P.A.S.)
| | - Melanie-Jayne R. Howes
- Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (M.-J.R.H.); (I.W.F.)
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK;
| | - Robert Hider
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK;
| | - Paul A. Sharp
- Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK; (K.K.K.); (P.A.S.)
| | - Iain W. Farrell
- Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (M.-J.R.H.); (I.W.F.)
| | - Gladys O. Latunde-Dada
- Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK; (K.K.K.); (P.A.S.)
- Correspondence:
| |
Collapse
|
8
|
Gao J, Xu Y, Hua C, Li C, Zhang Y. Molecular Cloning and Functional Characterization of a Sterol 3- O-Glucosyltransferase Involved in Biosynthesis of Steroidal Saponins in Trigonella foenum-graecum. FRONTIERS IN PLANT SCIENCE 2021; 12:809579. [PMID: 34966407 PMCID: PMC8710529 DOI: 10.3389/fpls.2021.809579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Fenugreek (Trigonella foenum-graecum), a pharmacologically important herb, is widely known for its antidiabetic, hypolipidemic, and anticancer effects. The medicinal properties of this herb are accredited to the presence of bioactive steroidal saponins with one or more sugar moieties linked to the C-3 OH position of disogenin or its C25-epimer yamogenin. Despite intensive studies regarding pharmacology and phytochemical profiles of this plant, enzymes and/or genes involved in synthesizing the glycosidic part of fenugreek steroidal saponins are still missing so far. This study reports the molecular cloning and functional characterization of a key sterol-specific glucosyltransferase, designated as TfS3GT2 here, from fenugreek plant. The recombinant TfS3GT2 was purified via expression in Escherichia coli, and biochemical characterization of the recombinant enzyme suggested its role in transferring a glucose group onto the C-3 hydroxyl group of diosgenin or yamogenin. The functional role of TfS3GT2 in the steroidal saponin biosynthesis was also demonstrated by suppressing the gene in the transgenic fenugreek hairy roots via the RNA interference (RNAi) approach. Down-regulation of TfS3GT2 in fenugreek generally led to reduced levels of diosgenin or yamogenin-derived steroidal saponins. Thus, Tf3SGT2 was identified as a steroid-specific UDP-glucose 3-O-glucosyltransferase that appears to be involved in steroidal saponin biosynthesis in T. foenum-graecum.
Collapse
|
9
|
Stefanowicz-Hajduk J, Król-Kogus B, Sparzak-Stefanowska B, Kimel K, Ochocka JR, Krauze-Baranowska M. Cytotoxic activity of standardized extracts, a fraction, and individual secondary metabolites from fenugreek seeds against SKOV-3, HeLa and MOLT-4 cell lines. PHARMACEUTICAL BIOLOGY 2021; 59:424-437. [PMID: 33849376 PMCID: PMC8057092 DOI: 10.1080/13880209.2021.1903047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Trigonella foenum-graecum L. (Fabaceae) has many therapeutic properties and anticancer potential. OBJECTIVE The cytotoxic activities of standardized extracts and a fraction from fenugreek seeds and their compounds (sapogenins, flavone C-glycosides, alkaloid trigonelline) against human cancer SKOV-3, HeLa and MOLT-4 cells were evaluated. MATERIALS AND METHODS Fenugreek seeds were extracted with 70% methanol (A) or water (B). Furthermore, the seeds were purified with petroleum ether and chloroform and next extracted with methanol to obtain fraction (C). The quantitative analysis of saponins and flavonoids in the extracts was done with HPLC methods. The extracts (5-120 µg/mL) and compounds (1-50 µg/mL) were tested on the cells by MTT assay and RTCA system. The effect of a fraction on ROS production, mitochondrial membrane potential and caspase-3/7 activity in HeLa and SKOV-3 cells was also evaluated by flow cytometry. RESULTS The strongest cytotoxic activity on cancer cells showed the fraction C (IC50 was 3.91 ± 0.03 for HeLa, 3.97 ± 0.07 for SKOV-3, and 7.75 ± 0.37 for MOLT-4) with the highest content of steroidal saponins (163.18 ± 11.03 μg/mg) and flavone C-glycosides (820.18 ± 0.05 μg/mg). The fraction significantly increased ROS production (up to four times higher than in keratinocytes as control) and caspases activity in the cells. The examined flavonoids did not exhibit the cytotoxic activity in contrast to yamogenin, tigogenin, and diosgenin. CONCLUSIONS The obtained results complement the data on the cytotoxic activity of Foenugraeci Semen and synergistic effect of flavonoids and saponins complex contained in the plant.
Collapse
Affiliation(s)
| | - Barbara Król-Kogus
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Katarzyna Kimel
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
- CONTACT Mirosława Krauze-Baranowska Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Król-Kogus B, Głód D, Hałasa R, Krauze-Baranowska M, Pobłocka-Olech L. 2D LC as a tool for standardization of Foenugraeci semen extracts containing compounds with anti-Helicobacter pylori activity. Food Funct 2021; 12:2686-2692. [PMID: 33660729 DOI: 10.1039/d1fo00226k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The on-line heart-cutting two-dimensional liquid chromatography method with the use of a diode array detector and a mass spectrometer (LC-LC-DAD-ESI-MS) was established and validated for quantitation of C-glycosylflavones in fenugreek seeds (Foenugraeci semen, Trigonella foenum-graecum L.). The first- (1D) and second- (2D) dimensional separations were performed on Kinetex C-18 columns with different diameters, respectively, and gradient (1D) and isocratic elution (2D). Finally, 17 compounds were separated, 13 of which were quantified by 1D separation and 4 compounds by 2D separation. As a result, it was pointed out that fenugreek seeds of Polish origin can be considered as a rich source of C-glycosylflavones. Antibacterial activity against Helicobacter pylori of standardized 70% methanol extract from fenugreek seeds has been demonstrated, in contrast to the inactive aqueous extract. Anti-H. pylori activity of the 70% methanol extract can be related to a higher concentration of C-glycosylflavones. This is the first report on the bactericidal activity of vitexin, diosgenin, tigogenin and sarsasapogenin against H. pylori and the bacteriostatic activity of orientin against this bacterium.
Collapse
Affiliation(s)
- Barbara Król-Kogus
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | | | | | | | | |
Collapse
|