1
|
Mkulo EM, Wang B, Amoah K, Huang Y, Cai J, Jin X, Wang Z. The current status and development forecasts of vaccines for aquaculture and its effects on bacterial and viral diseases. Microb Pathog 2024; 196:106971. [PMID: 39307198 DOI: 10.1016/j.micpath.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The aquaculture sector predicts protein-rich meals by 2040 and has experienced significant economic shifts since 2000. However, challenges emanating from disease control measures, brood stock improvement, feed advancements, hatchery technology, and water quality management due to environmental fluctuations have been taken as major causative agents for hindering the sector's growth. For the past years, aquatic disease prevention and control have principally depended on the use of various antibiotics, ecologically integrated control, other immunoprophylaxis mechanisms, and chemical drugs, but the long-term use of chemicals such as antibiotics not only escalates antibiotic-resistant bacteria and genes but also harms the fish and the environments, resulting in drug residues in aquatic products, severely obstructing the growth of the aquaculture sector. The field of science has opened new avenues in basic and applied research for creating and producing innovative and effective vaccines and the enhancement of current vaccines to protect against numerous infectious diseases. Recent advances in vaccines and vaccinology could lead to novel vaccine candidates that can tackle fish diseases, including parasitic organism agents, for which the current vaccinations are inadequate. In this review, we study and evaluate the growing aquaculture production by focusing on the current knowledge, recent progress, and prospects related to vaccinations and immunizations in the aquaculture industry and their effects on treating bacterial and viral diseases. The subject matter covers a variety of vaccines, such as conventional inactivated and attenuated vaccines as well as advanced vaccines, and examines their importance in real-world aquaculture scenarios. To encourage enhanced importation of vaccines for aquaculture sustainability and profitability and also help in dealing with challenges emanating from diseases, national and international scientific and policy initiatives need to be informed about the fundamental understanding of vaccines.
Collapse
Affiliation(s)
- Evodia Moses Mkulo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Kwaku Amoah
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Xiao Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Zhang H, Liu J, Yao J, He F, Ying X. Two novel ketone alkaloids from Portulaca oleraceaL. and their anti-inflammatory activities. Nat Prod Res 2024:1-8. [PMID: 38472190 DOI: 10.1080/14786419.2024.2325593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Eleven compounds were obtained from Portulaca oleracea L., including two novel ketone alkaloids, (1, 2), 4-hydroxy-3-methoxybenzamide (3) (isolated for the first time), β-adenosine (4), oleracrylimide A and B (5, 6), oleracein H, C, D, Q and A (7-11). The two novel ketone alkaloids were identified as 5-acetyl-5-methylcyclopent-2-ene-1-carboxamide (1), named oleraciamide H, and (2 R,3S,4R,5R)-5-((R)-1,2-dihydroxyethyl)-3,4-dihydroxytetrahydrofuran-2-yl glycinate (2), named oleracone Q by spectroscopic methods, including 1D, 2D NMR and compound fingerprints. Additionally, their anti-inflammatory activities were tested via RAW 264.7 cells induced by LPS and found that they could significantly inhibit the release of IL-1β and TNF-α.
Collapse
Affiliation(s)
- Hongzhe Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Junjie Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| | - Fan He
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, P.R. China
| |
Collapse
|
3
|
Sourani Z, Shirian S, Shafiei S, Mosayebi N, Nematollahi A. Modulation of Immune-Related Gene Expressions in Zebrafish (Danio rerio) by Dietary Purslane (Portulaca oleracea) Extract. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:214-221. [PMID: 36609893 DOI: 10.1007/s10126-022-10195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
To promote fish's immunity against pathogens in the aquaculture industry, fish dietary fortification with additives or compounds has increasingly attracted attention. In the present study, zebrafish (Danio rerio) was used as an animal model to investigate the effects of purslane, Portulaca oleracea, extract (PE) on the relative expression level of some immune-related genes. A total of 300 zebrafish were randomly divided into four treatment groups and fed for 8 weeks with the basal diets supplemented with 0.5, 1, 1.5, and 2% of PE. The control group was fed with a basal diet without PE. At the end of 8 weeks, the mRNA expression levels of interleukin 1-beta (IL-1β), interleukin 10 (IL-10), transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD), and lysozyme (LYZ) in the fish were evaluated. The results showed that the mRNA expression level of IL-1β was significantly upregulated in the fish fed with 1 and 2% PE compared to the control group (p < 0.05). Moreover, the evaluation of the mRNA expression level of TGF-β was significantly increased in a dose-dependent manner in the 1.5 and 2% fed groups compared to the control group (p < 0.05). However, the IL-10 was significantly downregulated in all treated groups compared to the control group (p < 0.05). The expression of the TNF-α gene was not affected amongst all groups by the inclusion of PE in the zebrafish diet (p > 0.05). Based on the results, the diet supplemented with 1.5 and 2% PE significantly upregulated the mRNA expression levels of LYZ and SOD, respectively, compared to the control group (p < 0.05). In conclusion, dietary inclusion of PE may result in beneficial effects on some immune responses via upregulation of some immune genes in zebrafish.
Collapse
Affiliation(s)
- Zahra Sourani
- Department of Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sadegh Shirian
- Department of Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Shafigh Shafiei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Nadia Mosayebi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Amin Nematollahi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Bio-active components in medicinal plants: A mechanistic review of their effects on fish growth and physiological parameters. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
World population is increasing at a tremendous rate so is the demand for animal-based protein. Aquaculture is a promising industry that has the potential to supply high quality protein for mankind with minimum environmental impact. In the past decade, aquaculture practices have been shifting from extensive to intensive culture. To achieve maximum production per unit area, high stocking densities are maintained in intensive aquaculture. If not managed properly, this may lead to stress in fish. Fish under stress condition show decreased growth, suppressed appetite, weakened immunity and increased susceptibility to infections. Chemicals, vaccines and antibiotics are used for the treatment of diseased fish. Use of synthetic chemicals, vaccines and antibiotics is not sustainable because pathogens develop resistance against them and they have high residues. Moreover, certain chemicals used for the treatment of fish diseases are not safe for humans therefore, are banned in some countries. Plant parts and their extracts are used in traditional medicines to cure many diseases and to improve health of mankind. In aquaculture industry, use of plants and their derivatives in fish feed to improve health status of fish is increasing. Several plants improve growth and overall health status of fish, some provide protection against pathogens by improving the immune system while others increase appetite by direct action on neuro-endocrine axis of fish. This review provides an in depth and up to date information about use of medicinal plants and their derivatives to improve growth and physiological status of fish and their possible mechanism of action.
Collapse
|
5
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|