1
|
Rasool M, Pushparaj PN, Haque A, Shorbaji AM, Mira LS, Bakhashab S, Alama MN, Farooq M, Karim S, Larsen LA. Discovery of a novel mutation F184S (c.551T>C) in GATA4 gene causing congenital heart disease in a consanguineous Saudi family. Heliyon 2024; 10:e37177. [PMID: 39286212 PMCID: PMC11403501 DOI: 10.1016/j.heliyon.2024.e37177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background & aim Congenital heart disease (CHD) is the most common cause of non-infectious deaths in infants worldwide. However, the molecular mechanisms underlying CHD remain unclear. Approximately 30 % of the causes are believed to be genetic mutations and chromosomal abnormalities. In this study, we aimed to identify the genetic causes of CHD in consanguineous families. Methods Fourth-generation pedigrees with CHD were recruited. The main cardiac features of the patient included absence of the right pulmonary artery and a large dilated left pulmonary artery. To determine the underlying genetic cause, whole-exome sequencing was performed and subsequently confirmed using Sanger sequencing and different online databases to study the pathogenesis of the identified gene mutation. An in-silico homology model was created using the Alphafold homology model structure of GATA4 (AF-P43694-F1). The missense3D online program was used to evaluate the structural alterations. Results We identified a deleterious mutation c.551T > C (p.Phe184Ser) in GATA4. GATA4 is a highly conserved zinc-finger transcription factor, and its continuous expression is essential for cardiogenesis during embryogenesis. The in-silico model suggested a compromised binding efficiency with other proteins. Several variant interpretation algorithms indicated that the F184S missense variant in GATA4 is damaging, whereas HOPE analysis indicated the functional impairment of DNA binding of transcription factors and zinc-ion binding activities of GATA4. Conclusion The variant identified in GATA4 appears to cause recessive CHD in the family. In silico analysis suggested that this variant was damaging and caused multiple structural and functional aberrations. This study may support prenatal screening of the fetus in this family to prevent diseases in new generations.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Center, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Mohammed Shorbaji
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loubna Siraj Mira
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabil Alama
- Department of Cardiology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Thapa R, Moglad E, Goyal A, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Ali H, Oliver BG, MacLoughlin R, Dureja H, Singh SK, Dua K, Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI JOURNAL 2024; 23:991-1017. [PMID: 39253534 PMCID: PMC11382301 DOI: 10.17179/excli2024-7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024]
Abstract
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2137 Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94 Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77 Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40 Ireland
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Center for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Ashiq S, Sabar MF. Association of maternal hypertension and diabetes with variants of the NKX2-5, LEFTY1 and LEFTY2 genes in children with congenital heart defects: a case-control study from Pakistani Population. Mol Biol Rep 2023; 50:5013-5020. [PMID: 37097539 DOI: 10.1007/s11033-023-08418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Globally, congenital heart defect (CHD) is the most common congenital malformation, responsible for higher morbidity and mortality in the pediatric population. It is a complex multifactorial disease influenced by gene-environment and gene-gene interactions. The current study was the first attempt to study these polymorphisms in common clinical phenotypes of CHD in Pakistan and the association between maternal hypertension and diabetes with single nucleotide polymorphisms (SNPs) in children. METHODS A total of 376 subjects were recruited in this current case-control study. Six variants from three genes were analyzed by cost-effective multiplex PCR and genotyped by minisequencing. Statistical analysis was done by GraphPad prism and Haploview. The association of SNPs and CHD was determined using logistic regression. RESULTS The risk allele frequency was higher in cases as compared to healthy subjects, but the results were not significant for rs703752. However, stratification analysis suggested that rs703752 was significantly associated with the tetralogy of Fallot. The rs2295418 was significantly associated with maternal hypertension (OR = 16.41, p = 0.003), while a weak association was present between maternal diabetes and rs360057 (p = 0.08). CONCLUSION In conclusion, variants in transcriptional and signaling genes were associated with Pakistani pediatric CHD patients that showed varied susceptibility between different clinical phenotypes of CHD. In addition, this study was the first report regarding the significant association between maternal hypertension and the LEFTY2 gene variant.
Collapse
Affiliation(s)
- Sana Ashiq
- Centre for Applied Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan
| | - Muhammad Farooq Sabar
- Centre for Applied Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, 53700, Pakistan.
| |
Collapse
|
4
|
Luo M, Wang T, Huang P, Zhang S, Song X, Sun M, Liu Y, Wei J, Shu J, Zhong T, Chen Q, Zhu P, Qin J. Association of Maternal Betaine-Homocysteine Methyltransferase (BHMT) and BHMT2 Genes Polymorphisms with Congenital Heart Disease in Offspring. Reprod Sci 2023; 30:309-325. [PMID: 35835902 DOI: 10.1007/s43032-022-01029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/25/2022] [Indexed: 01/11/2023]
Abstract
To systematically explore the association of single nucleotide polymorphisms (SNPs) of maternal BHMT and BHMT2 genes with the risk of congenital heart disease (CHD) and its three subtypes including atrial septal defect (ASD), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) in offspring. A hospital-based case-control study involving 683 mothers of CHD children and 740 controls was performed. Necessary exposure information was captured through epidemiological investigation. Totally twelve SNPs of maternal BHMT and BHMT2 genes were detected and analyzed systematically. The study showed that maternal BHMT gene polymorphisms at rs1316753 (CG vs. CC: OR = 1.96 [95% CI 1.41-2.71]; GG vs. CC: OR = 1.99 [95% CI 1.32-3.00]; dominant model: OR = 1.97 [95% CI 1.44-2.68]) and rs1915706 (TC vs. TT: OR = 1.93 [95% CI 1.44-2.59]; CC vs. TT: OR = 2.55 [95% CI 1.38-4.72]; additive model: OR = 1.77 [95% CI 1.40-2.24]) were significantly associated with increased risk of total CHD in offspring. And two haplotypes were observed to be significantly associated with risk of total CHD, including C-C haplotype involving rs1915706 and rs3829809 in BHMT gene (OR = 1.30 [95% CI 1.07-1.58]) and C-A-A-C haplotype involving rs642431, rs592052, rs626105, and rs682985 in BHMT2 gene (OR = 0.71 [95% CI 0.58-0.88]). Besides, a three-locus model involving rs1316753 (BHMT), rs1915706 (BHMT), and rs642431 (BHMT2) was identified through gene-gene interaction analyses (P < 0.01). As for three subtypes including ASD, VSD, and PDA, significant SNPs and haplotypes were also identified. The results indicated that maternal BHMT gene polymorphisms at rs1316753 and rs1915706 are significantly associated with increased risk of total CHD and its three subtypes in offspring. Besides, significant interactions between different SNPs do exist on risk of CHD. Nevertheless, studies with larger sample size in different ethnic populations and involving more SNPs in more genes are expected to further define the genetic contribution underlying CHD and its subtypes.
Collapse
Affiliation(s)
- Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Taowei Zhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China.
| |
Collapse
|