1
|
The Influence of the Slope Exposure on the Soil Aggregation and Structure, Water Stability of Aggregates, and Ecological Microstructure Formation of the Ravine Forest Soils in Pre-Dnipro Region (Ukraine). EKOLÓGIA (BRATISLAVA) 2020. [DOI: 10.2478/eko-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The soil aggregation and structure, water stability of aggregates, and peculiarities of microstructure formation of the ravine forest soils in Dnipropetrovsk region on the example of the northern variant of the ravine forest “Kapitanivskiy” have been identified. The soil properties of southern and northern ravine exposures have been compared. The soil structure, aggregate composition, water stability of aggregates as well as soil-forming processes of the ravine ecosystem have been analyzed. Micro-morphological studies have shown a high degree of aggregation of the upper (0–60 cm) horizons of the soil profile. The structure-forming process is of a zoogenic origin. Aggregates of coprolite nature contain well-disintegrated plant remains. Dark gray, almost black color along the entire area of the micromorphological slide is due to a large amount of organic compounds, which indicates active processes of humification. Fine-dispersed humus consists of a large number of evenly spaced humus clusters. The type of humus is mull. The skeleton consists of minerals of various sizes, dominated by quartz and feldspars. Plasma is humus-clay, homogeneous throughout the entire slide, anisotropic with speckled glowing. Microstructure is mainly aggregated and, in some places, spongy, depending on a microzone of the soil slide. Elemental microstructure is of plasma-silty type. The area of the visible surface of the pores in the upper horizons of the soil profile is fairly large (40%). Pores are round and elongated, of regular shape, here and there with remains of small invertebrates. The deeper the soil slide is, the smaller the area of visible pores along with aggregation becomes. Correlating with micromorphological characteristics, water resistance of structural aggregates reaches very high (90.01% ± 3.07) values in the upper horizons of the soil slide, decreasing at depths. The coefficient of pedality is rather high (7.83 ± 0.81) in the upper horizons, decreasing at depths.
Collapse
|
2
|
Soil Microbiota of Dystric Cambisol in the High Tatra Mountains (Slovakia) after Windthrow. SUSTAINABILITY 2019. [DOI: 10.3390/su11236851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There has been much more damage to forests in the Slovak Republic in the second half of the 20th century than to other European countries. Forested mountain massifs have become a filter of industrial and transportation emissions from abroad, as well as from domestic origins. There are not only acidic deposits of sulphur and heavy metals present in forest soils, but other additional environmental problems, such as climate change, storms, fires, floods, droughts, are worsening the situation. Therefore, forest terrestrial ecosystems are becoming more vulnerable due to changes in natural and environmental conditions. In the High Tatra Mountains in Slovakia, which are protected as a national park, four internationally monitored localities were established after the windthrow disaster in 2004 and fire in 2005: REF, with intact forest; EXT, with extracted wood mass; NEX, with non-extracted wood mass; and FIR, the burnt locality. Soils from these localities were microbiologically analysed with special attention to fungi. Bacterial microbiota detected by high-throughput sequencing showed the prevalence of the genera Acidothermus, Mycobacterium, and Nocardia, and a very low presence of the genera Acidibacter, Burkholderia-Paraburkholderia, Optitus and the uncultured genus Desulfurellaceae H16 in the soil sample from the burnt locality when compared with the unburned sites. Additionally, soil mycocoenoses showed a low similarity between the locality with an intact forest ecosystem and the localities with extracted (REF–EXT) and non-extracted (REF–NEX) wood mass. There was no similarity with the burnt locality (FIR), where heat-resistant fungi dominated. It was shown that the windthrow disaster and subsequent extraction or non-extraction of wood mass did not affect the soil microbial communities or their development. On the other hand, the influence of fire was significant.
Collapse
|