1
|
Alcalá-Orozco M, Lobo-Farfan I, Tirado DF, Mantilla-Escalante DC. Enhancing the Nutritional and Bioactive Properties of Bee Pollen: A Comprehensive Review of Processing Techniques. Foods 2024; 13:3437. [PMID: 39517221 PMCID: PMC11544882 DOI: 10.3390/foods13213437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bee pollen is recognized as a superfood due to its high content of nutrients and bioactive compounds. However, its bioavailability is restricted by a degradation-resistant outer layer known as exine. Physical and biotechnological techniques have recently been developed to degrade this layer and improve pollen's nutritional and functional profile. This review examines how processing methods such as fermentation, enzymatic hydrolysis, ultrasound, and drying affect pollen's chemical profile, nutrient content, and bioactive compounds. The review also considers changes in exine structure and possible synergistic effects between these methods. In addition, the challenges associated with the commercialization of processed bee pollen are examined, including issues such as product standardization, stability during storage, and market acceptance. The objective was to provide an understanding of the efficacy of these techniques, their physicochemical conditions, and their effect on the nutritional value of the pollen. The work also analyzes whether pollen transformation is necessary to maximize its benefits and offers conclusions based on the analysis of available methods, helping to determine whether pollen transformation is a valid strategy for inclusion in functional foods and its impact on consumer health. Although the literature reports that pollen transformation influences its final quality, further studies are needed to demonstrate the need for pollen exine modification, which could lead to greater market availability of pollen-based products with functional properties.
Collapse
Affiliation(s)
- María Alcalá-Orozco
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
| | - Isabella Lobo-Farfan
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diego F. Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diana C. Mantilla-Escalante
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
- Universidad del Sinú Elías Bechara Zainúm, Seccional Cartagena, Cartagena de Indias 1300001, Colombia
| |
Collapse
|
2
|
Liu Y, Jiang B, Wang K. A review of fermented bee products: Sources, nutritional values, and health benefits. Food Res Int 2023; 174:113506. [PMID: 37986501 DOI: 10.1016/j.foodres.2023.113506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Bee products have garnered considerable interest due to their abundant nutritional content and versatile biological activities. The utilization of bee products as fermentation materials has shown favorable potential for increasing nutrients, altering texture, and endorsing unique tastes. This review critically examines the existing literature on fermented bee products, with a specific emphasis on the impact of fermentation on their nutritional composition and potential health benefits. The raw materials, strains, conditions, and methodologies employed in the fermentation of bee products, as well as the utilization of bee products as fermentation raw materials/excipients, are reviewed. We also present a special focus on the nutritional composition and content of bioactive substances, such as polyphenols and volatile organic compounds, in fermented bee products. Additionally, the influence of fermentation on bee product ingredients and their health benefits is summarized. Fermented bee products substantially benefit human health, with superior antioxidant, anti-inflammatory, and anti-allergic properties compared to non-fermented bee products. Finally, this article discusses the types, strains, health benefits, production processes, and market prospects of fermented bee products, which are expected to become an important part of human food culture as functional food or nutritional supplements. The aforementioned findings highlight the remarkable nutritional value and bioactive properties exhibited by fermented bee products.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bokai Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
4
|
The Impact of Fermentation on Bee Pollen Polyphenolic Compounds Composition. Antioxidants (Basel) 2022; 11:antiox11040645. [PMID: 35453330 PMCID: PMC9032161 DOI: 10.3390/antiox11040645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bee-collected pollen is one of the most valuable natural products. However, the pollen cell walls limit the digestibility and release of nutrients to the human body. Solid-state lactic acid fermentation can be used to ease the release of bioactive compounds from the pollen cell. The aim of this research was to determine the impact of a solid-state lactic acid fermentation process on biologically active compound composition and antioxidant activity of bee-collected pollen from various European regions (Italy, Netherlands, Lithuania, Poland, Sweden, Denmark, Malta, Slovakia, and Spain). Spontaneous fermentation and fermentation using an L. rhamnosus culture were performed. The total content of phenolic compounds, total content of flavonoids, and radical (DPPH) scavenging activity were measured by spectrophotometric tests, while UPLC was employed for quantification of phenolic compounds. The determined fermentation positive effects included an increase of total phenolic content by 1.4-2.3 times, total flavonoid content by 1.1-1.6 times, and radical scavenging activity by 1.4-2.3 times. Naringenin (21.09-135.03 µg/g), quercetin (6.62-78.86 µg/g), luteolin (29.41-88.90 µg/g), and rutin (21.40-89.93 µg/g) were the most abundant flavonoids in all samples; however, their variation level was both geographical in origin and fermentation-type dependent. Fermentation increased the content of phenolic acids with high antioxidant potentials such as ellagic, ferulic and caffeic, while reduction of chlorogenic acid was determined.
Collapse
|
5
|
Luo X, Dong Y, Gu C, Zhang X, Ma H. Processing Technologies for Bee Products: An Overview of Recent Developments and Perspectives. Front Nutr 2021; 8:727181. [PMID: 34805239 PMCID: PMC8595947 DOI: 10.3389/fnut.2021.727181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Increased demand for a more balanced, healthy, and safe diet has accelerated studies on natural bee products (including honey, bee bread, bee collected pollen royal jelly, propolis, beeswax, and bee venom) over the past decade. Advanced food processing techniques, such as ultrasonication and microwave and infrared (IR) irradiation, either has gained popularity as alternatives or combined with conventional processing techniques for diverse applications in apiculture products at laboratory or industrial scale. The processing techniques used for each bee products have comprehensively summarized in this review, including drying (traditional drying, infrared drying, microwave-assisted traditional drying or vacuum drying, and low temperature high velocity-assisted fluidized bed drying), storage, extraction, isolation, and identification; the assessment methods related to the quality control of bee products are also fully mentioned. The different processing techniques applied in bee products aim to provide more healthy active ingredients largely and effectively. Furthermore, improved the product quality with a shorter processing time and reduced operational cost are achieved using conventional or emerging processing techniques. This review will increase the positive ratings of the combined new processing techniques according to the needs of the bee products. The importance of the models for process optimization on a large scale is also emphasized in the future.
Collapse
Affiliation(s)
- Xuan Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chen Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Lawag IL, Yoo O, Lim LY, Hammer K, Locher C. Optimisation of Bee Pollen Extraction to Maximise Extractable Antioxidant Constituents. Antioxidants (Basel) 2021; 10:1113. [PMID: 34356345 PMCID: PMC8301099 DOI: 10.3390/antiox10071113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
This paper presents the findings of a comprehensive review on common bee pollen processing methods which can impact extraction efficiency and lead to differences in measured total phenolic content (TPC) and radical scavenging activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) data. This hampers the comparative analysis of bee pollen from different floral sources and geographical locations. Based on the review, an in-depth investigation was carried out to identify the most efficient process to maximise the extraction of components for measurement of TPC, DPPH and FRAP antioxidant activity for two bee pollen samples from western Australia (Jarrah and Marri pollen). Optimisation by Design of Experiment with Multilevel Factorial Analysis (Categorical) modelling was performed. The independent variables included pollen pulverisation, the extraction solvent (70% aqueous ethanol, ethanol, methanol and water) and the extraction process (agitation, maceration, reflux and sonication). The data demonstrate that non-pulverised bee pollen extracted with 70% aqueous ethanol using the agitation extraction method constitute the optimal conditions to maximise the extraction of phenolics and antioxidant principles in these bee pollen samples.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Okhee Yoo
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| | - Katherine Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- M Block QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Monash Ave, Perth, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Agriculture North M085, Perth, WA 6009, Australia; (I.L.L.); (K.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Curnow Building M315, Perth, WA 6009, Australia; (O.Y.); (L.Y.L.)
| |
Collapse
|
7
|
Mora-Adames WI, Fuenmayor CA, Benavides-Martín MA, Algecira-Enciso NA, Quicazán MC. Bee pollen as a novel substrate in pilot-scale probiotic-mediated lactic fermentation processes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Volatilome and Bioaccessible Phenolics Profiles in Lab-Scale Fermented Bee Pollen. Foods 2021; 10:foods10020286. [PMID: 33572637 PMCID: PMC7911640 DOI: 10.3390/foods10020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Bee-collected pollen (BCP) is currently receiving increasing attention as a dietary supplement for humans. In order to increase the accessibility of nutrients for intestinal absorption, several biotechnological solutions have been proposed for BCP processing, with fermentation as one of the most attractive. The present study used an integrated metabolomic approach to investigate how the use of starter cultures may affect the volatilome and the profile of bioaccessible phenolics of fermented BCP. BCP fermented with selected microbial starters (Started-BCP) was compared to spontaneously fermented BCP (Unstarted-BCP) and to unprocessed raw BCP (Raw-BCP). Fermentation significantly increased the amount of volatile compounds (VOC) in both Unstarted- and Started-BCP, as well as modifying the relative proportions among the chemical groups. Volatile free fatty acids were the predominant VOC in Unstarted-BCP. Started-BCP was differentiated by the highest levels of esters and alcohols, although volatile free fatty acids were always prevailing. The profile of the VOC was dependent on the type of fermentation, which was attributable to the selected Apilactobacillus kunkeei and Hanseniaspora uvarum strains used as starters, or to the variety of yeasts and bacteria naturally associated to the BCP. Started-BCP and, to a lesser extent, Unstarted-BCP resulted in increased bioaccessible phenolics, which included microbial derivatives of phenolic acids metabolism.
Collapse
|