1
|
Yang Q, Huang W, Yin D, Zhang L, Gao Y, Tong J, Li Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genet 2023; 14:1128985. [PMID: 37284064 PMCID: PMC10239837 DOI: 10.3389/fgene.2023.1128985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) affects approximately 400 million people worldwide and is associated with high mortality and morbidity. The effect of EPHX1 and GSTP1 gene polymorphisms on COPD risk has not been fully characterized. Objective: To investigate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. Methods: A systematic search was conducted on 9 databases to identify studies published in English and Chinese. The analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA). The pooled OR and 95% CI were calculated to evaluate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. The I2 test, Q test, Egger's test, and Begg's test were conducted to determine the level of heterogeneity and publication bias of the included studies. Results: In total, 857 articles were retrieved, among which 59 met the inclusion criteria. The EPHX1 rs1051740 polymorphism (homozygote, heterozygote, dominant, recessives, and allele model) was significantly associated with high risk of COPD risk. Subgroup analysis revealed that the EPHX1 rs1051740 polymorphism was significantly associated with COPD risk among Asians (homozygote, heterozygote, dominant, and allele model) and Caucasians (homozygote, dominant, recessives, and allele model). The EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with a low risk of COPD. Subgroup analysis showed that the EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Asians. The GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk. Subgroup analysis showed that the GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk among Caucasians. The GSTP1 rs1138272 polymorphism (heterozygote and dominant model) was significantly associated with COPD risk. Subgroup analysis suggested that the GSTP1 rs1138272 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Caucasians. Conclusion: The C allele in EPHX1 rs1051740 among Asians and the CC genotype among Caucasians may be risk factors for COPD. However, the GA genotype in EPHX1 rs2234922 may be a protective factor against COPD in Asians. The GG genotype in GSTP1 rs1695 and the TC genotype in GSTP1 rs1138272 may be risk factors for COPD, especially among Caucasians.
Collapse
Affiliation(s)
- Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wanqiu Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| |
Collapse
|
2
|
Jangala M, Manche SK, Katika MM, Koralla RM, Akka J. Association of CYP1A2 and GST gene variants with asthma in cases presenting with allergic chronic rhinosinusitis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Abstract
Background
Inter-individual differences in regulation and activity of xenobiotic metabolizing enzymes (XMEs) CYP1A and GST might cause distinct susceptibility to chronic rhinosinusitis (CRS) phenotypes that need to be explored. Therefore, the present study aimed to evaluate the role and risk of CYP1A and GST gene variants in allergic CRS subjects with and without asthma. A total of 224 allergic CRS cases with asthma, 252 allergic CRS cases without asthma, and 350 healthy control subjects were subjected to genetic analysis. Gene variants of cytochrome P450 (CYP1A1 T3801 rs4646903, A2455G rs1048943, C2453A rs1799814 and CYP1A2 G3858A rs2069514, T739G rs2069526, C163A rs762551) and glutathione S-transferase P (GSTP1 A313G rs1605 & C341T rs1799811) were investigated by polymerase chain reaction-restriction fragment length polymorphism and GSTM1null, and GSTT1null by multiplex PCR methods.
Results
TG genotype of CYP1A2 rs2069526 (OR 1.73, 95% CI 1.20–2.50, p < 0.002), TC genotype of CYP1A1 rs4646903 (OR 1.43, 95% CI 1.03–1.98, p < 0.031) and GSTM1del (OR 1.87, 95% CI 1.24–2.81, p < 0.003) and were found to be significantly associated with only allergic CRS cases. CYP1A2 rs2069526 (OR 2.33, 95% CI 1.61–3.37, p < 0.001), GG genotype of GSTP1 rs1605 (OR 4.75, 95% CI 2.62–8.63, p < 0.001), GSTM1del (OR 1.82, 95% CI 1.19–2.78, p < 0.006), GSTM1/GSTT1 double null (OR 2.58, 95% CI 1.36–4.87, p < 0.004) and were found to be significantly associated with asthma in allergic CRS cases. Further, G-G-C haplotype of CYP1A2 rs2069514, rs2069526 and rs762551 gene variants was found to increase the risk for asthma by 5 folds in allergic CRS subjects (OR 5.53, 95% CI 1.76–17.31, p < 0.003) while T-G-C haplotype of CYP1A1 rs4646903, rs1048943, rs1799814 (OR 0.11, 95% CI (0.01–0.95, p < 0.045) and A-T haplotype of GSTP1 rs1605, rs1799811 (OR 0.27, 95% CI (0.08–0.89, p < 0.032) showed protective effect in allergic CRS group.
Conclusion
The present study reports the significantly increased association of CYP1A2, GSTM, and GSTP gene variants with asthma in allergic CRS.
Collapse
|
3
|
Tacheva T, Zienolddiny-Narui S, Dimov D, Vlaykova D, Miteva I, Vlaykova T. The Leucocyte Telomere Length, GSTM1 and GSTT1 Null Genotypes and the Risk of Chronic Obstructive Pulmonary Disease. Curr Issues Mol Biol 2022; 44:3757-3769. [PMID: 36005153 PMCID: PMC9406937 DOI: 10.3390/cimb44080257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidative stress, both in the airways and blood, and in other organs. Elevated oxidative stress and inflammation have been reported to affect leucocyte telomere length (LTL). We explored the link between GSTM1 and GSTT1 gene polymorphisms, LTL and COPD risk. For GSTM1 and GSTT1, we genotyped 152 COPD patients and 131 non-affected controls, while for TL, we assessed 91 patients and 88 controls. There was a significant difference in GSTM1 null genotype frequency between the patients and controls (0.59 vs. 0.38, p ≤ 0.000), but such was not found for GSTT1 (p = 0.192). COPD patients carrying the GSTM1 null genotype had shorter telomeres compared to those carrying the non-null genotype (15,720 bp vs. 22,442 bp, p = 0.008); and in controls, the opposite occurred (31,354 bp vs. 17,800 bp, p = 0.020). According to our results GSTM1, but not GSTT1, null genotypes might play role in leucocyte telomere shortening, and thus be involved in the pathogenesis of COPD. Abstract Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidative stress both in the airways and blood and other organs. Elevated oxidative stress and inflammation have been reported to affect leucocyte telomere length (LTL). Glutathione S-transferase (GST) enzymes are a large family of xenobiotic-metabolizing enzymes that utilize different ROS products. We aimed to explore the link between GSTM1 and GSTT1 gene polymorphisms, LTL and COPD risk. For GSTM1, we genotyped 152 COPD patients and 131 non-affected controls; for GSTT1, we genotyped 149 COPD patients and 130 controls. We were able to assess TL for 91 patients and 88 controls. There was a significant difference in the GSTM1 null genotype frequency between the patients and controls (0.59 vs. 0.38, p ≤ 0.000), but such was not found for GSTT1 (p = 0.192). When combining both polymorphisms, we obtained a significantly greater presence of at least one null genotype among patients (0.12 vs. 0.05, p = 0.027). An association between GSTT1 and LTL was not found. COPD patients carrying the GSTM1 null genotype had shorter telomeres compared to those carrying the non-null genotype (15,720 bp vs. 22,442 bp, p = 0.008); as for the controls, it was the opposite (31,354 bp vs. 17,800 bp, p = 0.020). The significance in both groups remained when combining GSTM1 and GSTT1 (COPD (at least one null) 16,409 bp vs. COPD (non-null) 22,092 bp, p = 0.029; control (at least one null) 29,666 bp vs. control (non-null) 16,370 bp, p = 0.027). The total glutathione level in GSTM1 non-null controls was higher compared to the null genotype (15.39 ng/mL vs. 5.53 ng/mL, p = 0.002). In COPD patients, we found no association (p = 0.301). In conclusion, according to our results, GSTM1, but not GSTT1, null genotypes might play a role in leucocyte telomere shortening, and thus be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Tanya Tacheva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Shanbeh Zienolddiny-Narui
- Section for Toxicology and Biological Work Environment, National Institute of Occupational Health, NO-036 Oslo, Norway
| | - Dimo Dimov
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Denitsa Vlaykova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Iva Miteva
- Department of Occupational Medicine, Faculty of Public Health, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Tatyana Vlaykova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Medical Biochemistry, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Ben Anes A, Ben Nasr H, Garrouche A, Bchir S, Dhaouefi Z, Chabchoub E, Tabka Z, Chahed K. The Cu/Zn superoxide dismutase +35A/C (rs2234694) variant correlates with altered levels of protein carbonyls and glutathione and associates with severity of COPD in a Tunisian population. Free Radic Res 2019; 53:293-303. [DOI: 10.1080/10715762.2019.1572888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Amel Ben Anes
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hela Ben Nasr
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Abdelhamid Garrouche
- Service de Pneumo-Allergologie Centre hospitalier universitaire Farhat Hached, Sousse, Tunisia
| | - Sarra Bchir
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Zaineb Dhaouefi
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté de Médecine Dentaire, Université de Monastir, Monastir, Tunisia
| | - Elyes Chabchoub
- Unité de Recherche 04/UR/08-05 Molecular Immunogenetics Faculté de Médecine, Sousse, Tunisia
| | - Zouhair Tabka
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Karim Chahed
- Unité de recherche UR12ES06 Physiologie de l’Exercice et Physiopathologie: de l’Intégré au Moléculaire « Biologie, Médecine et Santé », Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
- Faculté des Sciences de Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
6
|
Ding Z, Wang K, Li J, Tan Q, Tan W, Guo G. Association between glutathione S‐transferase gene M1 and T1 polymorphisms and chronic obstructive pulmonary disease risk: A meta‐analysis. Clin Genet 2018; 95:53-62. [PMID: 29704242 DOI: 10.1111/cge.13373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Z. Ding
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| | - K. Wang
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| | - J. Li
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| | - Q. Tan
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| | - W. Tan
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| | - G. Guo
- Department of Respiratory MedicineWeifang People's Hospital Weifang China
| |
Collapse
|
7
|
Stankovic M, Nikolic A, Nagorni-Obradovic L, Petrovic-Stanojevic N, Radojkovic D. Gene–Gene Interactions Between Glutathione S-Transferase M1 and Matrix Metalloproteinases 1, 9, and 12 in Chronic Obstructive Pulmonary Disease in Serbians. COPD 2017; 14:581-589. [DOI: 10.1080/15412555.2017.1369022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marija Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ljudmila Nagorni-Obradovic
- Clinic for Pulmonary Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Petrovic-Stanojevic
- Department of Pulmonology, Zvezdara University Medical Center, Belgrade, Serbia
- School of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Malic Z, Topic A, Francuski D, Stankovic M, Nagorni-Obradovic L, Markovic B, Radojkovic D. Oxidative Stress and Genetic Variants of Xenobiotic-Metabolising Enzymes Associated with COPD Development and Severity in Serbian Adults. COPD 2016; 14:95-104. [PMID: 27421065 DOI: 10.1080/15412555.2016.1199667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genetic and non-genetic factors that contribute to the development of chronic obstructive pulmonary disease (COPD) are still poorly understood. We investigated the potential role of genetic variants of xenobiotic-metabolising enzymes (glutathione-S-transferase M1, GSTM1; glutathione-S-transferase T1, GSTT1; microsomal epoxide hydrolase, mEH), oxidative stress (assessed by urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG/creatinine), sex, ageing and smoking habits on susceptibility to development of COPD and its severity in Serbian population. The investigated population consisted of 153 healthy subjects (85 males and 68 females) and 71 patients with COPD (33 males and 38 females). Detection of GSTM1*null, GSTT1*null, mEH Tyr113His and mEH His139Arg gene variants was performed by PCR/RFLP method. Urinary 8-oxodG was determined using HPLC-MS/MS, and expressed as 8-oxodG/creatinine. We revealed that increased urinary 8-oxodG/creatinine and leucocytosis are the strongest independent predictors for COPD development. Increased level of oxidative stress increased the risk for COPD in males [odds ratio (OR), 95% confidence interval (CI): 8.42, 2.26-31.28], more than in females (OR, 95% CI: 3.60, 1.37-9.45). Additionally, independent predictors for COPD were ageing in males (OR, 95% CI: 1.29, 1.12-1.48), while in females they were at least one GSTM1 or GSTT1 gene deletion in combination (OR, 95% CI: 23.67, 2.62-213.46), and increased cumulative cigarette consumption (OR, 95% CI: 1.09, 1.01-1.16). Severity of COPD was associated with the combined effect of low mEH activity phenotype, high level of oxidative stress and heavy smoking. In conclusion, early identification of GSTM1*null or GSTT1*null genotypes in females, low mEH activity phenotype in heavy smokers and monitoring of oxidative stress level can be useful diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zivka Malic
- a Faculty of Pharmacy, University of Bijeljina , Bijeljina , Bosnia and Herzegovina
| | - Aleksandra Topic
- b Department of Medical Biochemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Djordje Francuski
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Marija Stankovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Ljudmila Nagorni-Obradovic
- d Clinic for Pulmonary Diseases Clinical Centre of Serbia, University of Belgrade, School of Medicine , Belgrade , Serbia
| | - Bojan Markovic
- e Department of Pharmaceutical Chemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Dragica Radojkovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
9
|
Topic A, Nagorni-Obradovic L, Francuski D, Ljujic M, Malic Z, Radojkovic D. Oxidative Stress and Polymorphism of Xenobiotic-Metabolizing Enzymes in Two Patients with Severe Alpha-1-Antitrypsin Deficiency. Biochem Genet 2016; 54:746-52. [PMID: 27271084 DOI: 10.1007/s10528-016-9748-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Alpha-1-antitrypsin deficiency (AATD) and tobacco smoke play a key role in the pathogenesis of early-onset emphysema. Differences in AATD-related chronic obstructive pulmonary disease stages imply the existence of modifying factors associated with disease severity. We present two male patients with emphysema caused by severe AATD (PiZZ genotype). Both are former smokers and have epoxide hydrolase low-activity phenotype. Extremely high level of oxidative stress (high urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine), increased inflammation (high serum CRP), and GSTP1 105Val mutation were found in patient with a worse lung function and prognosis. These data provide more evidence that oxidative stress-related gene variants and inflammation are associated with worse symptoms of AATD-related emphysema. Therefore, prevention against severe stage of AATD-related emphysema would include early identification of the risk gene variants, cessation or never smoking, and treatment with anti-inflammatory and anti-oxidant drugs. Additionally, urinary 8-oxodG could be a candidate for predictive biomarker for routine assessment of the oxidative stress level in AATD patients.
Collapse
Affiliation(s)
- Aleksandra Topic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe, 450, Belgrade, 11221, Serbia.
| | - Ljudmila Nagorni-Obradovic
- School of Medicine, Clinic for Pulmonary Diseases Clinical Centre of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje Francuski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Zivka Malic
- Faculty of Pharmacy, University of Bijeljina, Bijeljina, Bosnia and Herzegovina
| | - Dragica Radojkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Topic A, Malic Z, Francuski D, Stankovic M, Markovic B, Soskic B, Tomic B, Ilic S, Dobrivojevic S, Drca S, Radojkovic D. Gender-related differences in susceptibility to oxidative stress in healthy middle-aged Serbian adults. Biomarkers 2016; 21:186-93. [PMID: 26754535 DOI: 10.3109/1354750x.2015.1126647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gender-related differences in the association between polymorphism of xenobiotic-metabolising enzymes or non-genetic biomarkers and susceptibility to oxidative stress was assessed in healthy middle-aged Serbian adults, by urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG/creatinine) and total antioxidant status in serum (TAOS). Females were more susceptible to oxidative stress. In both genders, positive predictor of the antioxidative protection was serum triglyceride, while BMI <25 kg/m(2) was associated with oxidative stress. Susceptibility to oxidative stress in males was associated with GSTT1*null allele and increased serum iron, but in females, it was decreased serum bilirubin. Early identification of the risk factors could be important in the prevention of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Aleksandra Topic
- a Department of Medical Biochemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Zivka Malic
- b Faculty of Pharmacy , University of Bijeljina , Bijeljina , Bosnia & Herzegovina
| | - Djordje Francuski
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Marija Stankovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Bojan Markovic
- d Department of Pharmaceutical Chemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Blagoje Soskic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Branko Tomic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Stefan Ilic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Snezana Dobrivojevic
- e Clinical Chemical Laboratory, Health Centre , "Stari Grad", Belgrade , Serbia , and
| | - Sanja Drca
- f Clinical Chemical Laboratory, General Hospital , Pancevo , Serbia
| | - Dragica Radojkovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| |
Collapse
|