1
|
Liadi YM, Campbell T, Hwang BJ, Elliott B, Odero-Marah V. High Mobility Group AT-hook 2: A Biomarker Associated with Resistance to Enzalutamide in Prostate Cancer Cells. Cancers (Basel) 2024; 16:2631. [PMID: 39123360 PMCID: PMC11311100 DOI: 10.3390/cancers16152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT). This study examines HMGA2's role in enzalutamide resistance. LNCaP and 22Rv1 cells overexpressing wild-type HMGA2, but not truncated HMGA2, showed EMT. Both variants led to a decreased sensitivity to enzalutamide but not alisertib compared to Neo control cells. The overexpression of HMGA2 did not alter AR expression. Enzalutamide-resistant C4-2B cells (C4-2B MDVR) had higher HMGA2 and AR/AR variant expression than enzalutamide-sensitive C4-2B cells but remained sensitive to alisertib. The HMGA2 knockdown in C4-2B MDVR cells increased sensitivity to both enzalutamide and alisertib without changing AR expression. A clinical analysis via cBioPortal revealed HMGA2 alterations in 3% and AR alterations in 59% of patients. The HMGA2 changes were linked to treatments like enzalutamide, abiraterone, or alisertib, with amplifications more prevalent in bone, lymph node, and liver metastases. Conclusively, HMGA2 is a potential biomarker for enzalutamide resistance in mPCa, independent of Snail and AR signaling, and alisertib may be an effective treatment for mPCa that expresses HMGA2.
Collapse
Affiliation(s)
- Yusuf Mansur Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
- Department of Biology, Umaru Musa Yar’adua University, Katsina 820102, Nigeria
| | - Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA;
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Bethtrice Elliott
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD 21251, USA; (Y.M.L.); (B.-J.H.); (B.E.)
| |
Collapse
|
2
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ye Z, Gui D, Wang X, Wang J, Fu J. LncRNA SNHG1 promotes renal cell carcinoma progression through regulation of HMGA2 via sponging miR-103a. J Clin Lab Anal 2022; 36:e24422. [PMID: 35466471 PMCID: PMC9169200 DOI: 10.1002/jcla.24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) plays a vital role in tumorigenesis and development. The molecular mechanism of SNHG1 in renal cell carcinoma (RCC) has not been illustrated. The aim of this research was to explore the expression and function of LncRNA SNHG1 in RCC. MATERIAL AND METHODS The expression of SNHG1 in clinical tissues and RCC cell lines was detected. Luciferase reporter assay was performed to verify the correlation between SNHG1, miR-103a, and HMGA2. CCK-8 assay was performed to examine cell viability. Cell apoptosis was analyzed using flow cytometry. Cell invasion capacity was determined by Transwell assays. The protein level of HMGA2 was analyzed by Western blotting. RESULTS The expression of SNHG1 markedly increased in RCC tissues and cell lines. Subsequent studies identified SNHG1 as a miRNA sponge for miR-103a. In addition, SNHG1 knockdown and miR-103a overexpression significantly inhibited progression of RCC. miR-103a also regulated HMGA2 levels. CONCLUSION Our findings showed that SNHG1 was upregulated in RCC cells and tissues. SNHG1 promoted the malignant characteristics of RCC cells. Its regulatory effect may be regulation of HMGA2 by sponging miR-103a. Therefore, Our study facilitates the understanding of SNHG1 function in RCC.
Collapse
Affiliation(s)
- Zhi‐hua Ye
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventioHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| | - Ding‐wen Gui
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventioHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| | - Xiao‐ying Wang
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventioHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| | - Jing Wang
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventioHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| | - Jin‐lun Fu
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventioHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| |
Collapse
|
4
|
Liu Y, Lv G, Bai J, Song L, Ding E, Liu L, Tian Y, Chen Q, Li K, Liu X, Ding Y. Effects of HMGA2 on the epithelial-mesenchymal transition-related genes in ACHN renal cell carcinoma cells-derived xenografts in nude mice. BMC Cancer 2022; 22:421. [PMID: 35439951 PMCID: PMC9016978 DOI: 10.1186/s12885-022-09537-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background The architectural transcriptional regulator high-mobility group AT-hook 2 (HMGA2) is an oncofetal protein which has been reported to be ectopically expressed in a variety of cancers. A high expression of HMGA2 in human renal cell carcinoma (RCC) is related with tumor invasiveness and poor prognosis. Recent in vitro studies have shown that HMGA2 knockdown was able to decrease cell proliferation and migration, and regulate the gene expression related to epithelial-mesenchymal transition (EMT). Methods To understand the HMGA2’s effect in vivo, HMGA2 expression was knocked down in ACHN cells using small hairpin RNA (shRNA), then the HMGA2-deficient ACHN cells were xenografted into the BALB/c nude mice. Tumor growth was monitored and the expression of EMT-related genes was analyzed. Results HMGA2 expression was confirmed to be knocked down in the cultured and xenografted ACHN cells. The xenograft tumor of HMGA2-deficient cells demonstrated a retarded growth pattern compared with the control. The expression of E-cadherin was increased, whereas N-cadherin and Snail were decreased in the HMGA2-deficient xenograft tumors. Conclusions In conclusion, to the best of our knowledge, for the first time, we have successfully developed an in vivo experiment using HMGA2-silencing ACHN cells to be grown as xenografts in nude mice. Our findings show that HMGA2 deficiency was sufficient to suppress the xenograft tumor growth in vivo, which support our hypothesis that HMGA2-induced renal carcinogenesis occurs at least in part through the regulation of tumor associated EMT genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09537-w.
Collapse
Affiliation(s)
- Ying Liu
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| | - Guangyao Lv
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jianxin Bai
- Department of Intervention, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lingling Song
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Elizabeth Ding
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Lin Liu
- Navy Qingdao Special Care Center, Qingdao, 266071, China
| | - Yuqin Tian
- Department of Surgical Operations, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Chen
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Kai Li
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xianfeng Liu
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yan Ding
- The Institute for Translational Medicine Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China. .,Department of Pediatrics, Children's Hospital of Boston, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:pharmaceutics14040718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
- Correspondence: ; Tel.: +39-040-399-3227
| |
Collapse
|
6
|
Chen Q, Fu Q, Pu L, Liu X, Liu Y. Effects of HMGA2 gene silencing on cell cycle and apoptosis in the metastatic renal carcinoma cell line ACHN. J Int Med Res 2022; 50:3000605221075511. [PMID: 35118889 PMCID: PMC8819771 DOI: 10.1177/03000605221075511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the role of high mobility group AT-hook 2 (HMGA2) in the
regulation of the cell cycle and apoptosis. Methods The renal carcinoma cell line ACHN was transiently transfected with small
interfering RNA to knock down the expression of the HMGA2
gene. Cell cycle analysis was undertaken using flow cytometry. The mRNA and
protein levels of HMGA2, E2F transcription factor 1 (E2F1), cyclin D1,
cyclin dependent kinase 6 (CDK6), B-cell lymphoma-2 (Bcl-2), caspase-3 and
caspase-9 were analysed using reverse transcription quantitative real-time
polymerase chain reaction and Western blot analysis. Results The mRNA and protein levels of HMGA2 were significantly higher in renal
carcinoma cell lines compared with the human renal proximal tubular
epithelial cell line HKC. After HMGA2 gene-specific
silencing, more cells entered the G0/G1 phase, while
fewer cells entered the G2/M phase; and the cells exhibited early
and late apoptosis. HMGA2 gene-specific silencing
significantly reduced the mRNA and protein levels of E2F1, cyclin D1, CDK6
and Bcl-2; and increased the mRNA and protein levels of caspase-3 and
caspase-9. Conclusion The HMGA2 gene may be involved in the tumorigenesis and
development of renal cancer, thus inhibiting HMGA2 gene
expression might provide a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Ying Liu, Department of Urology Surgery,
The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street,
Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
7
|
Wang T, Zhu H, Yang S, Fei X. Let‑7a‑5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 2019; 19:4229-4237. [PMID: 30896854 PMCID: PMC6471493 DOI: 10.3892/mmr.2019.10057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus (DM), and has been demonstrated as one of the major causes of renal failure. In a previous study, it was noted that microRNA let-7a-5p was downregulated in DN; however, the underlying mechanism requires additional investigation. The aim of the present study was to investigate the roles of let-7a-5p in the pathogenesis of DN and its associated mechanism. The renal tissues of db/db and db/m mice, and renal mesangial cells treated with high concentrations of glucose were obtained; reverse transcription-quantitative polymerase chain reaction, and western blot analysis were applied to detect the expression of let-7a-5p and high-mobility group AT-hook 2 (HMGA2) in vivo and in vitro. In addition, renal mesangial cells cultured under high-glucose conditions (20 and 30 mmol/l) were transfected with either let-7a-5p mimics or let-7a-5p inhibitors. The effects of let-7a-5p on the proliferation and apoptosis of renal mesangial cells were examined using CCK-8 and flow cytometry methods. Additionally, cells were collected and the expression of phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (p-AKT) and HMGA2 was analyzed with western blot analysis. Finally, a dual luciferase reporter assay was performed to confirm whether HMGA2 was a direct target of let-7a-5p. Let-7a-5p was significantly downregulated and HMGA2 was markedly upregulated in the tissue samples of DN mice and renal mesangial cells cultured under high-glucose conditions. In addition, transfection of let-7a-5p mimics induced a significant decrease in the proliferation and increase in the apoptosis of renal mesangial cells cultured under high-glucose conditions; transfection of let-7a-5p inhibitors exhibited the opposite effects. Furthermore, transfection of let-7a-5p mimics also led to the inhibition of the PI3K-AKT signaling pathway; transfection of let-7a-5p inhibitors may activate the PI3K-AKT signaling pathway through the increase in PI3K and AKT levels. Finally, a dual luciferase reporter assay confirmed that HMGA2 is a direct target of let-7a-5p. Let-7a-5p was downregulated in DN and may participate in the pathogenesis of DN via regulating HMGA2 expression and the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Laboratory, Taixing City Second People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Hua Zhu
- Department of Clinical Laboratory, Taixing City Second People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Shufang Yang
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaoqiang Fei
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
8
|
Liu R, Yang Z, Huang S, Li D, Zou Q, Yuan Y. The expressions of HMGA2 and Thy1 in extrahepatic cholangiocarcinoma and their clinicopathological significances. Surg Oncol 2019; 29:41-47. [PMID: 31196492 DOI: 10.1016/j.suronc.2019.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 01/18/2023]
Abstract
AIMS Extrahepatic cholangiocarcinoma is a malignant tumor and poor prognosis with intrinsic resistance to cytotoxic agents. The molecular mechanism associated with high malignancy and resistance to chemotherapy and radiotherapy has not been fully elucidated. This study aims to investigate the clinicopathological significances of HMGA2 and Thy1 expression in extrahepatic cholangiocarcinoma. METHODS The expressions of HMGA2 and Thy1 in 100 extrahepatic cholangiocarcinoma, 30 peritumoral tissues, 10 adenoma and 15 normal biliary tract tissues were assayed using EnVision immunohistochemistry. RESULTS The HMGA2 and Thy1 proteins were overexpression in extrahepatic cholangiocarcinoma compared to peritumoral tissues, adenoma, and normal biliary tract tissues (P < 0.05 or P < 0.01). Adenoma and pericancerous tissues with positive HMGA2 or/and Thy1 protein expression exhibited atypical hyperplasia. The positive correlation was found between the expression of HMGA2 and Thy1 in extrahepatic cholangiocarcinoma (P < 0.01). The positive rates of HMGA2 and Thy1 expression were significantly higher in cases with poor differentiation, lymph node metastasis, invasion, and TNM stage III or IV and no resection (biopsy only) (P < 0.05 or P < 0.01). Kaplan-Meier survival analysis showed that the survival of extrahepatic cholangiocarcinoma patients with positive HMGA2 and/or Thy1 expression is significantly shorter than patients with negative HMGA2 and/or Thy1 expression (P = 0.000). Cox multivariate analysis revealed that positive HMGA2 and/or Thy1 expressions were independently poor prognosis factors in extrahepatic cholangiocarcinoma patients. We calculated the AUC for HMGA2 (AUC = 0.610, 95%CI: 0.519-0.702), or Thy1 (AUC = 0.675, 95%CI: 0.588-0.762), respectively. CONCLUSIONS The present study indicated that positive HMGA2 and Thy1 expression are closely associated with the pathogenesis, clinical, pathological and biological behaviors, and poor prognosis in patients with extrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Rushi Liu
- Laboratory of Medical Molecular and Immunological Diagnostics, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013, PR China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| | - Shengfu Huang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China
| |
Collapse
|
9
|
Zhao H, Zhao H, Xia X, Liu X. MicroRNA-599 targets high-mobility group AT-hook 2 to inhibit cell proliferation and invasion in clear cell renal carcinoma. Mol Med Rep 2018; 17:7451-7459. [PMID: 29568870 DOI: 10.3892/mmr.2018.8755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the occurrence and development of clear cell renal cell carcinoma (ccRCC) through their participation in a number of critical biological processes. Therefore, an in‑depth investigation into miRNAs and their biological roles within ccRCC may provide useful insights and lead to the identification of novel therapeutic methods for patients with ccRCC. miRNA‑599 (miR‑599) serves critical roles in different types of human cancer. However, the expression pattern, biological function and molecular mechanism of miR‑599 in ccRCC remain unknown. The present study aimed to detect the expression level of miR‑599 in ccRCC, examine its effect on ccRCC progression and further explore the possible underlying mechanisms. It was observed that miR‑599 was significantly underexpressed in ccRCC tissues and cell lines compared with the control. Functional assays revealed that restored expression of miR‑599 restricted the proliferation and invasion of ccRCC cells. Bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrated that high‑mobility group AT‑hook 2 (HMGA2) was a direct target of miR‑599 in ccRCC. HMGA2 knockdown simulated the suppressive effects caused by miR‑599 overexpression in ccRCC. Recovered HMGA2 expression partially rescued the miR‑599‑mediated inhibition of ccRCC proliferation and invasion. These results suggest that miR‑599 may serve tumour suppressive roles in ccRCC by directly targeting HMGA2, indicating that miR‑599 may have potential as a treatment for patients with ccRCC.
Collapse
Affiliation(s)
- Hailing Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Huizhen Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiaolin Xia
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiujuan Liu
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
10
|
Kou B, Liu W, Tang X, Kou Q. HMGA2 facilitates epithelial-mesenchymal transition in renal cell carcinoma by regulating the TGF-β/Smad2 signaling pathway. Oncol Rep 2017; 39:101-108. [PMID: 29138866 PMCID: PMC5783590 DOI: 10.3892/or.2017.6091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2), a member of the high mobility group family, has been reported to correlate with cancer progression. However, there is no report concerning the correlation between HMGA2 and metastasis in renal cell carcinoma. In the present study, we found that HMGA2 was highly expressed in five renal cell carcinoma cell lines compared with that in the normal renal tubular epithelial HK2 cell line. Additionally, HMGA2 facilitated cell migration and invasion of renal cell carcinoma cells, as evidenced by wound healing and Transwell assays. Subsequently, our results revealed that the E-cadherin level was upregulated, while N-cadherin, Twist1 and Twist2 expression were downregulated in HMGA2-depleted ACHN cells. In contrast, overexpression of HMGA2 in 786-O cells enhanced epithelial-mesenchymal transition (EMT). In addition, analysis of the database Cancer Browser further validated the positive correlation between HGMA2 and Twist1 or Twist2 in renal cell carcinoma. Meanwhile, Kaplan-Meier analysis indicated that low HMGA2 expression was closely associated with an increased overall survival in renal cell carcinoma patients. To confirm the underlying mechanism of HMGA2-regulated EMT, our results revealed that silencing of HMGA2 downregulated the mRNA and protein levels of TGF-β and Smad2, while HMGA2 overexpression had the opposite effect. Furthermore, TGF-β overexpression could partially reverse the anti-metastatic effect and mesenchymal-epithelial transition (MET) by HMGA2 loss, while TGF-β deficiency impeded the pro-metastatic phenotype and high expression of EMT markers induced by HMGA2 overexpression. In summary, our results demonstrated that HMGA2 facilitated a metastatic phenotype and the EMT process in renal cell carcinoma cells in vitro through a TGF-β-dependent pathway. In addition, these data strongly suggest that HGMA2 may serve as a potential therapeutic target and prognostic biomarker against renal cell carcinoma in the future.
Collapse
Affiliation(s)
- Bo Kou
- Department of Cardiovascular Surgery, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Liu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoshuang Tang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingshan Kou
- Medical Center, First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
11
|
Liu Y, Fu QZ, Pu L, Song LL, Wang YY, Liu J, Wang ZL, Wang ZM. Effect of RNA interference of the expression of HMGA2 on the proliferation and invasion ability of ACHN renal cell carcinoma cells. Mol Med Rep 2017; 16:5107-5112. [PMID: 28849119 PMCID: PMC5647043 DOI: 10.3892/mmr.2017.7258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/04/2017] [Indexed: 11/06/2022] Open
Abstract
This aim of the present study was to observe the effect of high mobility group AT-hook 2 (HMGA2) on the proliferation and invasion ability of ACHN renal cell carcinoma (RCC) cells. Human ACHN cells, an RCC cell line, and HKC normal human renal tubular epithelial cells were cultured. HMGA2 small interfering (si)RNA, Mock-siRNA and their negative control group were designed and synthesized. Subsequently, the ACHN cells were transiently transfected using RNA interference technology. Finally, the mRNA and protein expression levels of HMGA2 were detected using reverse transcription-polymerase chain reaction and western blot analyses. The proliferation ability of the ACHN cells was determined using MTT, and ACHN cell invasion ability was detected using the Transwell method. The results showed that the mRNA and protein expression levels of HMGA2 in the ACHN cells were considerably higher, compared with those in the HKC cells (P<0.01). The RCC cells, in which the expression of HMGA2 was specifically silenced, was successfully constructed. The proliferation rate of cells in the HMGA2-siRNA group was significantly lower, compared with that of cells in the Mock-siRNA group and control group at 24, 48, 72 and 96 h post-transfection (P<0.05). The invasion ability of cells in the HMGA2-siRNA group was significantly lower, compared with that of cells in the Mock-siRNA group and control group (P<0.05) 48 h following transfection. Therefore, the HMGA2 gene may function as an oncogene in the occurrence and development of RCC, and provide specific targets for the targeted therapy of RCC. Further detailed investigations of the HMGA2 gene are important for future gene therapy of RCC.
Collapse
Affiliation(s)
- Ying Liu
- Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710049, P.R. China
| | - Qi-Zhong Fu
- Department of Urological Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lin Pu
- Department of Urological Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Ling-Ling Song
- Department of Urological Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yi-Yun Wang
- Department of Urological Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Jing Liu
- Department of Urological Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Zhen-Long Wang
- Department of Urological Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Zi-Ming Wang
- Department of Urological Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| |
Collapse
|