1
|
Sheng Y, Mills G, Zhao X. Identifying therapeutic strategies for triple-negative breast cancer via phosphoproteomics. Expert Rev Proteomics 2024:1-17. [PMID: 39588933 DOI: 10.1080/14789450.2024.2432477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Given the poor prognosis of patients with TNBC, it is urgent to identify new biomarkers and therapeutic targets to enable personalized treatment strategies and improve patient survival. Comprehensive insights beyond genomic and transcriptomic analysis are crucial to improved outcomes for patients. As proteins are the workhorses of cellular function with their activity primarily regulated by phosphorylation, advanced phosphoproteomics techniques, such as mass spectrometry and antibody arrays, are essential for elucidating kinase signaling pathways that drive TNBC progression and contribute to therapy resistance. AREA COVERED This review discusses the critical need to integrate phosphoproteomics into TNBC research, evaluates commonly used technologies and their applications, and explores their advantages and limitations. We highlight significant findings from phosphoproteomic analyses in TNBC and address the challenges of implementing these technologies into clinical practice. EXPERT OPINION Rapid advances in phosphoproteomics analysis facilitate subtype stratification, adaptive response monitoring, and identification of biomarkers and therapeutic targets in TNBC. However, challenges in analyzing protein phosphorylation, especially in deep spatially resolved analysis of malignant cells and the tumor ecosystem, hinder the translation of phosphoproteomics to the CLIA setting. Nonetheless, phosphoproteomics offers a powerful tool that, when integrated into routine clinical practice, has the potential to revolutionize patient care.
Collapse
Affiliation(s)
- Yuhan Sheng
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xuejiao Zhao
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Sun T, Golestani R, Zhan H, Krishnamurti U, Harigopal M, Zhong M, Liang Y. Clinicopathologic Characteristics of MYC Copy Number Amplification in Breast Cancer. Int J Surg Pathol 2024:10668969241256109. [PMID: 38839260 DOI: 10.1177/10668969241256109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Introduction. MYC overexpression is a known phenomenon in breast cancer. This study investigates the correlation of MYC gene copy number amplification and MYC protein overexpression with coexisting genetic abnormalities and associated clinicopathologic features in breast cancer patients. Methods. The study analyzed data from 81 patients with localized or metastatic breast cancers using targeted next-generation sequencing and MYC immunohistochemical studies, along with pathological and clinical data. Results. Applying the criteria of MYC/chromosome 8 ratio ≥5, MYC copy number amplified tumors (n = 11, 14%) were associated with invasive ductal carcinoma (91% vs 68%, P = .048), poorly differentiated (grade 3, 64% vs 30%, P = .032), mitotically active (Nottingham mitotic score 3, 71% vs 20%, P = .004), estrogen receptor (ER)-negative (45% vs 12%, P = .008), and triple-negative (56% vs 12%, P = .013) compared to MYC non-amplified tumors. Among MYC-amplified breast cancer patients, those with triple-negative status showed significantly shorter disease-free survival time than non-triple negative MYC-amplified patients (median survival month: 25.5 vs 127.6, P = .049). MYC amplification is significantly associated with TP53 mutation (P = .007). The majority (10 of 11; 91%) of MYC-amplified tumors showed positive c-MYC immunostaining. Conclusion. Breast cancers with MYC copy number amplication display distinct clinicopathologic characteristics indicative of more aggressive behavior.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Reza Golestani
- Department of Pathology, Cayuga Medical Center, Ithaca, NY, USA
| | - Haiying Zhan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Uma Krishnamurti
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, The Mount Sinai Hospital, New York, NY, USA
| | - Minghao Zhong
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yuanxin Liang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Nagahashi M, Ling Y, Toshikawa C, Hayashida T, Kitagawa Y, Futamura M, Kuwayama T, Nakamura S, Yamauchi H, Yamauchi T, Kaneko K, Kanbayashi C, Sato N, Tsuchida J, Moro K, Nakajima M, Shimada Y, Ichikawa H, Lyle S, Miyoshi Y, Takabe K, Okuda S, Wakai T. Copy number alteration is an independent prognostic biomarker in triple-negative breast cancer patients. Breast Cancer 2023; 30:584-595. [PMID: 36930419 DOI: 10.1007/s12282-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Next-generation sequencing (NGS) has enabled comprehensive genomic profiling to identify gene alterations that play important roles in cancer biology. However, the clinical significance of these genomic alterations in triple-negative breast cancer (TNBC) patients has not yet been fully elucidated. The aim of this study was to clarify the clinical significance of genomic profiling data, including copy number alterations (CNA) and tumor mutation burden (TMB), in TNBC patients. METHODS A total of 47 patients with Stage I-III TNBC with genomic profiling of 435 known cancer genes by NGS were enrolled in this study. Disease-free survival (DFS) and overall survival (OS) were evaluated for their association to gene profiling data. RESULTS CNA-high patients showed significantly worse DFS and OS than CNA-low patients (p = 0.0009, p = 0.0041, respectively). TMB was not associated with DFS or OS in TNBC patients. Patients with TP53 alterations showed a tendency of worse DFS (p = 0.0953) and significantly worse OS (p = 0.0338) compared with patients without TP53 alterations. Multivariable analysis including CNA and other clinicopathological parameters revealed that CNA was an independent prognostic factor for DFS (p = 0.0104) and OS (p = 0.0306). Finally, multivariable analysis also revealed the combination of CNA-high and TP53 alterations is an independent prognostic factor for DFS (p = 0.0005) and OS (p = 0.0023). CONCLUSIONS We revealed that CNA, but not TMB, is significantly associated with DFS and OS in TNBC patients. The combination of CNA-high and TP53 alterations may be a promising biomarker that can inform beyond standard clinicopathologic factors to identify a subgroup of TNBC patients with significantly worse prognosis.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - YiWei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Chie Toshikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Teruo Yamauchi
- Division of Medical Oncology, Department of Internal Medicine, St. Luke's International Hospital, 9-1 Akashicho, Chuo-Ku, Tokyo, 104-8560, Japan
| | - Koji Kaneko
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Chizuko Kanbayashi
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Nobuaki Sato
- Department of Breast Oncology, Niigata Cancer Center Hospital, 15-3 Kawagishi-Cho 2-Chome, Chuo-Ku, Niigata, 951-8566, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| | - Stephen Lyle
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biosciences, The State University of New York, Buffalo, NY, 14203, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
4
|
Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia 2021; 23:743-753. [PMID: 34225099 PMCID: PMC8259224 DOI: 10.1016/j.neo.2021.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic and aggressive subtype of breast cancer and cases presenting with lymph node involvement have worse outcomes. This study aimed to determine the regions of copy number variation (CNV) associated with lymph node metastasis in TNBC patients. CNV analyses were performed in a study cohort of 23 invasive ductal carcinomas (IDCs), 12 lymph node metastases (LNmets), and 7 normal adjacent tissues (NATs); as well as in an independent cohort containing 70 TNBC IDCs and the same 7 NATs. CNV-associated genes were analyzed using GO-enrichment and Pathway analysis. The prognostic role for genes showing CNV-based changes in messenger RNA expression was determined using the Kaplan-Meier plotter database. For the IDCs, there were a number of variations that were common in both the study and independent cohorts in the amplified regions of 1q, 8q, 19 (p and q), 2p, 5p and the deleted regions in 8p followed by 5q, and 19p. The most frequently amplified regions in the LNmets of the study cohort were 4q28.3, 2p, 3q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 6p22.1 and the most frequently deleted regions were in 1p36.23, 4q21.1 and 5q. A total of 686 (441 amplified and 245 deleted) genes were associated with LNmets. The LNmet-associated genes were highly enriched for “regulation of complement activation,” “regulation of protein activation cascade,” “regulation of humoral immune response,” “oxytocin signalling pathway,” and “TRAIL binding” pathways. Moreover, 6/686 LNmet-associated genes showed CNV-based changes in their mRNA expression of which, high expression of ASPM and KIF14 was significantly associated with worse relapse-free survival. This study has identified several CNV regions in TNBC that could play a major role in metastasis to the lymph node.
Collapse
Affiliation(s)
- Mamta Pariyar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrea Johns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
5
|
Rossi T, Palleschi M, Angeli D, Tebaldi M, Martinelli G, Vannini I, Puccetti M, Limarzi F, Maltoni R, Gallerani G, Fabbri F. Case Report: Analysis of Circulating Tumor Cells in a Triple Negative Spindle-Cell Metaplastic Breast Cancer Patient. Front Med (Lausanne) 2021; 8:689895. [PMID: 34249978 PMCID: PMC8264184 DOI: 10.3389/fmed.2021.689895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare population of cells found in the bloodstream and represent key players in the metastatic cascade. Their analysis has proved to provide further core information concerning the tumor. Herein, we aim at investigating CTCs isolated from a 32-year-old patient diagnosed with triple negative spindle-shaped metaplastic breast cancer (MpBC), a rare tumor poorly responsive to therapies and with a dismal prognosis. The molecular analysis performed on the primary tumor failed to underline effective actionable targets to address the therapeutic strategy. Besides the presence of round-shaped CTCs, cells with a spindle shape were present as well, and through molecular analysis, we confirmed their malignant nature. This aspect was coherent with the primary tumor histology, proving that CTCs are released regardless of their morphology. Copy number aberration (CNA) profiling and variant analysis using next-generation sequencing (NGS) showed that these cells did not harbor the alterations exhibited by the primary tumor (PIK3CA G1049A mutation, MYC copy number gain). However, despite the great heterogeneity observed, the amplification of regions involved in metastasis emerged (8q24.22–8q24.23). Our findings support the investigation of CTCs to identify alterations that could have a role in the metastatic process. To the best of our knowledge, this is the first examination of CTCs in an MpBC patient.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | | | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
6
|
Cong Y, Cui Y, Zhu S, Cao J, Zou H, Martin TA, Qiao G, Jiang W, Yu Z. Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells. Chin J Cancer Res 2020; 32:564-579. [PMID: 33223752 PMCID: PMC7666787 DOI: 10.21147/j.issn.1000-9604.2020.05.02] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Although T-cell immunoglobulin and mucin-domain containing molecule-3 (Tim-3) has been recognized as a promising target for cancer immunotherapy, its exact role in breast cancer has not been fully elucidated. Methods Tim-3 gene expression in breast cancer and its prognostic significance were analyzed. Associated mechanisms were then explored in vitro by establishing Tim-3-overexpressing breast cancer cells.
Results In a pooled analysis of The Cancer Genome Atlas (TCGA) database, Tim-3 gene expression levels were significantly higher (P<0.001) in breast cancer tissue, compared with normal tissues. Tim-3 was a prognosis indicator in breast cancer patients [relapse-free survival (RFS), P=0.004; overall survival (OS), P=0.099]. Tim-3 overexpression in Tim-3low breast cancer cells promoted aggressiveness of breast cancer cells, as evidenced by enhanced proliferation, migration, invasion, tight junction deterioration and tumor-associated tubal formation. Tim-3 also enhanced cellular resistance to paclitaxel. Furthermore, Tim-3 exerted its function by activating the NF-κB/STAT3 signalling pathway and by regulating gene expression [cyclin D1 (CCND1), C-Myc, matrix metalloproteinase-1(MMP1), TWIST, vascular endothelial growth factor (VEGF) upregulation, concomitant with E-cadherin downregulation). Lastly, Tim-3 downregulated tight junction-associated molecules zona occludens (ZO)-2, ZO-1 and occludin, which may further facilitate tumor progression.
Conclusions Tim-3 plays an oncogenic role in breast cancer and may represent a potential target for antitumor therapy.
Collapse
Affiliation(s)
- Yizi Cong
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.,Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Shiguang Zhu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, China
| | - Haidong Zou
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, China
| | - Tracey A Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264001, China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
7
|
Jafarian AH, Kooshkiforooshani M, Farzad F, Mohamadian Roshan N. The Relationship Between Fibroblastic Growth Factor Receptor-1 (FGFR1) Gene Amplification in Triple Negative Breast Carcinomas and Clinicopathological Prognostic Factors. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:299-304. [PMID: 31754359 PMCID: PMC6824770 DOI: 10.30699/ijp.2019.96713.1952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Background & Objective: In Triple-Negative Breast Cancers (TNBCs), estrogen receptor (ER), progesterone receptor (PR) and HER2/neu genes are not expressed. Fibroblastic Growth Factor Receptor-1 (FGFR1) gene product is a protein that acts as a receptor of thyrosin kinase. It plays a role in the proliferation, differentiation, and migration of malignant cells. The objective was to evaluate the possible relation between FGFR1 over-expression and amplification in TNBCs and other clinicopathological variables. Methods: In this cross sectional study, purposive sampling was used to collect eighty-four TNBC specimens from mastectomy specimens collected between 2013 and 2017. Tissue microarrays were evaluated for FGFR1 over-expression and amplification respectively by immunohistochemistry (IHC) staining and real time Polymerase Chain Reaction (PCR). The needed clinical and paraclinical information were obtained from patients’ files. To analyze the correlation among prognostic factors, we used a wide range of different statistic methods, namely Chi-square test, independent t-test, Fisher's exact test, and ANOVA. Results: FGFR1 over-expression was found in 15 of the 84 samples (17.9%). FGFR1 gene amplification was observed in 33.3% (28 of 84) of the samples. We found no association between FGFR1 and clinicopathological parameters, including tumor grade, stage, and patient survival (P>0.005). Conclusion: FGFR1 over-expression and amplification may not be related to clinicopathological parameters, namely age, stage, and grade of the cancer not to mention TNBC survival. Using FGFR1 as a prognostic factor in TNBCs requires further study.
Collapse
Affiliation(s)
- Amir Hossein Jafarian
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Kooshkiforooshani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzane Farzad
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohamadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|