1
|
Yang K, Wang Z, Wang X, Bi M, Hu S, Li K, Pan X, Wang Y, Ma D, Mo X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol J 2024; 21:230. [PMID: 39334389 PMCID: PMC11428415 DOI: 10.1186/s12985-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.
Collapse
Affiliation(s)
- Kai Yang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Zunbao Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Xinyu Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mingfang Bi
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Suhua Hu
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Kaijie Li
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaomei Pan
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Yuan Wang
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Dan Ma
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaobing Mo
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Wu X, Wang Q, Lu W, Wang Y, Han Z, Liang L, Gao S, Ma H, Luo X. The PCV3 Cap Virus-like Particle Vaccine with the Chimeric PCV2-Neutralizing Epitope Gene Is Effective in Mice. Vet Sci 2024; 11:264. [PMID: 38922011 PMCID: PMC11209062 DOI: 10.3390/vetsci11060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine circovirus infections. In this study, we used both E. coli and mammalian expression systems to express PCV3 Cap (Cap3) and a chimeric gene containing the PCV2-neutralizing epitope within the PCV3 Cap (Cap3-Cap2E), which were assembled into virus-like particle (VLP) vaccines. We found that Cap3 lacking nuclear localization signal (NLS) could not form VLPs, while Cap3 with a His-tag successfully assembled into VLPs. Additionally, the chimeric of PCV2-neutralizing epitopes did not interfere with the assembly process of VLPs. Various immunization approaches revealed that pCap3-Cap2E VLP vaccines were capable of activating high PCV3 Cap-specific antibody levels and effectively neutralizing both PCV3 and PCV2. Furthermore, pCap3-Cap2E VLPs demonstrated a potent ability to activate cellular immunity, protecting against PCV3 infection and preventing lung damage in mice. In conclusion, this study successfully developed a PCV3 Cap VLP vaccine incorporating chimeric PCV2-neutralizing epitope genes, providing new perspectives for PCV3 vaccine development.
Collapse
Affiliation(s)
- Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Qikai Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Wang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Zehao Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Shimin Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| |
Collapse
|
3
|
Tan CY, Lin CN, Ooi PT. What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound Emerg Dis 2021; 68:2915-2935. [PMID: 34110095 DOI: 10.1111/tbed.14185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Genetic diversity of porcine circovirus 3 strains and the first detection of two different PCV3 strains coinfecting the same host in Minas Gerais, Brazil. Arch Virol 2021; 166:1463-1468. [PMID: 33718993 DOI: 10.1007/s00705-021-05032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Porcine circovirus 3 (PCV3) is a recently emerged circovirus discovered in 2016 that has drawn the attention of the swine industry worldwide. In this study, we evaluated the genetic diversity of PCV3 strains on pig farms. A total of 261 samples from sows, weaning pigs, growing pigs, and stillborn/mummified fetuses were analyzed by quantitative real-time PCR. The results revealed that at least two main lineages of PCV3 are circulating in Brazil. For the first time, it was possible to detect the presence of two different PCV3 strains in the same host.
Collapse
|