1
|
Llamedo A, Rodríguez P, Gabasa Y, Soengas RG, Rodríguez-Solla H, Elorriaga D, García-Alonso FJ, Soto SM. Liposomal formulation of a gold(III) metalloantibiotic: a promising strategy against antimicrobial resistance. Dalton Trans 2024; 53:15205-15214. [PMID: 39221630 DOI: 10.1039/d4dt01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel lipoformulation was developed by encapsulating cationic (S^C)-cyclometallated gold(III) complex [Au(dppta)(N2Py-PZ-dtc)]+ (AuPyPZ) in liposomes. The liposomal form of compound AuPyPZ has a bactericidal action similar to that of the free drug without any appreciable effect on the viability of mammalian cells. Furthermore, the nanoformulation reduces metalloantibiotic-induced inhibition of hERG and the inhibition of cytochromes, significantly decreasing the potential liabilities of the metallodrug. The obtained metalloantibiotic liposomal formulation shows high stability and suitable properties for drug delivery, representing an effective strategy to fight against drug-resistant bacteria.
Collapse
Affiliation(s)
- Alejandro Llamedo
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Pablo Rodríguez
- Nanovex Biotechnologies S.L., Parque Tecnológico de Asturias Edificio CEEI, 33428 Llanera, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel G Soengas
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Humberto Rodríguez-Solla
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - David Elorriaga
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Francisco J García-Alonso
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Sara M Soto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
3
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Monger LJ, Razinkov D, Bjornsson R, Suman SG. Synthesis, Characterization, and Reaction Studies of Pd(II) Tripeptide Complexes. Molecules 2021; 26:molecules26175169. [PMID: 34500604 PMCID: PMC8433849 DOI: 10.3390/molecules26175169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aqueous synthesis of Pd(II) complexes with alkylated tripeptides led to the hydrolysis of the peptides at low pH values and mixtures of complexed peptides were formed. A non-aqueous synthetic route allowed the formation and isolation of single products and their characterization. Pd(II) complexes with α-Asp(OR)AlaGly(OR), β-Asp(OR)AlaGly(OR), and TrpAlaGly(OR) (R = H or alkyl) as tri and tetradentate chelates were characterized. The tridentate coordination mode was accompanied by a fourth monodentate ligand that was shown to participate in both ligand exchange reactions and a direct removal to form the tetradentate coordination mode. The tetradentate coordination revealed a rare a hemi labile carbonyl goup coordination mode to Pd(II). Reactivity with small molecules such as ethylene, acids, formate, and episulfide was investigated. Under acidic conditions and in the presence of ethylene; acetaldehyde was formed. The Pd(II) is a soft Lewis acid and thiophilic and the complexes abstract sulfur from episulfide at apparent modest catalytic rates. The complexes adopt a square planar geometry according to a spectroscopic analysis and DFT calculations that were employed to evaluate the most energetically favorable coordination geometry and compared with the observed infrared and NMR data.
Collapse
Affiliation(s)
- Lindsey J. Monger
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland; (L.J.M.); (D.R.)
| | - Dmitrii Razinkov
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland; (L.J.M.); (D.R.)
| | - Ragnar Bjornsson
- Max Planck Institute Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany;
| | - Sigridur G. Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland; (L.J.M.); (D.R.)
- Correspondence:
| |
Collapse
|
5
|
Monger LJ, Runarsdottir GR, Suman SG. Directed coordination study of [Pd(en)(H 2O) 2] 2+ with hetero-tripeptides containing C-terminus methyl esters employing NMR spectroscopy. J Biol Inorg Chem 2020; 25:811-825. [PMID: 32676770 DOI: 10.1007/s00775-020-01804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Alkylation of the C-terminus acids in small peptides allows direction to amine and amide coordination, while changing the peptide composition to form tetradentate κ4[n,5,5], where n = 5-, 6-, 7-, or 8-membered ring coordination geometries, can be achieved. The alkylated tripeptide ligands, TrpAlaGly(OMe), β-Asp(OtBu)AlaGly(OMe), Asp(OtBu)AlaGly(OMe), and the fully methylated GSH, γ-Glu(OMe)Cys(SMe)Gly(OMe), were synthesized and their coordination properties to [Pd(en)(H2O)2]2+ were studied. pH-dependent coordination was analyzed by NMR spectroscopy and the coordination to the alkylated tripeptides at selected pH values inferred from their NMR spectra. If selective coordination of amine/amide donors results in metal complexation, allowing for flexible and adjustable ligand frameworks, then this strategy could potentially be extended to other metal ions and peptide system.
Collapse
Affiliation(s)
- Lindsey J Monger
- Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavik, Iceland
| | | | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavik, Iceland.
| |
Collapse
|
6
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
7
|
Agbale CM, Sarfo JK, Galyuon IK, Juliano SA, Silva GGO, Buccini DF, Cardoso MH, Torres MDT, Angeles-Boza AM, de la Fuente-Nunez C, Franco OL. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019; 58:3802-3812. [PMID: 31448597 DOI: 10.1021/acs.biochem.9b00440] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed. Here, we engineered amino-terminal Cu(II) and Ni(II) (ATCUN) binding motifs, which can enhance biological function, into the native sequence of two AMPs, CM15 and citropin1.1. The incorporation of metal-binding motifs modulated the antimicrobial activity of synthetic peptides against a panel of carbapenem-resistant enterococci (CRE) bacteria, including carbapenem-resistant Klebsiella pneumoniae (KpC+) and Escherichia coli (KpC+). Activity modulation depended on the type of ATCUN variant utilized. Membrane permeability assays revealed that the in silico selected lead template, CM15, and its ATCUN analogs increased bacterial cell death. Mass spectrometry, circular dichroism, and molecular dynamics simulations indicated that coordinating ATCUN derivatives with Cu(II) ions did not increase the helical tendencies of the AMPs. CM15 ATCUN variants, when combined with Meropenem, streptomycin, or chloramphenicol, showed synergistic effects against E. coli (KpC+ 1812446) biofilms. Motif addition also reduced the hemolytic activity of the wild-type AMP and improved the survival rate of mice in a systemic infection model. The dependence of these bioactivities on the particular amino acids of the ATCUN motif highlights the possible use of size, charge, and hydrophobicity to fine-tune AMP biological function. Our data indicate that incorporating metal-binding motifs into peptide sequences leads to synthetic variants with modified biological properties. These principles may be applied to augment the activities of other peptide sequences.
Collapse
Affiliation(s)
- Caleb M Agbale
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Justice K Sarfo
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Isaac K Galyuon
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Samuel A Juliano
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Gislaine G O Silva
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Danieli F Buccini
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Marlon H Cardoso
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Octavio L Franco
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| |
Collapse
|
8
|
Ngo AH, Bose S, Do LH. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems. Chemistry 2018; 24:10584-10594. [DOI: 10.1002/chem.201800504] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Anh H. Ngo
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| | - Sohini Bose
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| | - Loi H. Do
- Department of Chemistry; University of Houston; 4800 Calhoun Road Houston TX 77004 USA
| |
Collapse
|
9
|
Affiliation(s)
- Ladislav Habala
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Department of Chemical Theory of Drugs, Comenius University Bratislava, Slovakia
| | | |
Collapse
|
10
|
Agbale CM, Cardoso MH, Galyuon IK, Franco OL. Designing metallodrugs with nuclease and protease activity. Metallomics 2017; 8:1159-1169. [PMID: 27714031 DOI: 10.1039/c6mt00133e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The accidental discovery of cisplatin some 50 years ago generated renewed interest in metallopharmaceuticals. Beyond cisplatin, many useful metallodrugs have been synthesized for the diagnosis and treatment of various diseases, but toxicity concerns, and the propensity to induce chemoresistance and secondary cancers make it imperative to search for novel metallodrugs that address these limitations. The Amino Terminal Cu(ii) and Ni(ii) (ATCUN) binding motif has emerged as a suitable template to design catalytic metallodrugs with nuclease and protease activities. Unlike their classical counterparts, ATCUN-based metallodrugs exhibit low toxicity, employ novel mechanisms to irreversibly inactivate disease-associated genes or proteins providing in principle, a channel to circumvent the rapid emergence of chemoresistance. The ATCUN motif thus presents novel strategies for the treatment of many diseases including cancers, HIV and infections caused by drug-resistant bacteria at the genetic level. This review discusses their design, mechanisms of action and potential for further development to expand their scope of application.
Collapse
Affiliation(s)
- Caleb Mawuli Agbale
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana and S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Isaac Kojo Galyuon
- School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil. and Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil and Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|