Body JJ, von Moos R, Niepel D, Tombal B. Hypocalcaemia in patients with prostate cancer treated with a bisphosphonate or denosumab: prevention supports treatment completion.
BMC Urol 2018;
18:81. [PMID:
30236112 PMCID:
PMC6148993 DOI:
10.1186/s12894-018-0393-9]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background
Most patients with advanced prostate cancer develop bone metastases, which often result in painful and debilitating skeletal-related events. Inhibitors of bone resorption, such as bisphosphonates and denosumab, can each reduce the incidence of skeletal-related events and delay the progression of bone pain. However, these agents are associated with an increased risk of hypocalcaemia, which, although often mild and transient, can be serious and life-threatening. Here we provide practical advice on managing the risk of hypocalcaemia in patients with advanced prostate cancer who are receiving treatment with bone resorption inhibitors. Relevant references for this review were identified through searches of PubMed with the search terms ‘prostate cancer’, ‘bone-targeted agents’, ‘anti-resorptive agents’, ‘bisphosphonates’, ‘zoledronic acid’, ‘denosumab’, ‘hypocalcaemia’, and ‘hypocalcemia’. Additional references were suggested by the authors.
Main text
Among patients with advanced cancer receiving a bisphosphonate or denosumab, hypocalcaemia occurs most frequently in those with prostate cancer, although it can occur in patients with any tumour type. Consistent with its greater ability to inhibit bone resorption, denosumab has shown superiority in the prevention of skeletal-related events in patients with bone metastases from solid tumours. Consequently, denosumab is more likely to induce hypocalcaemia than the bisphosphonates. Likewise, various bisphosphonates have differing potencies for the inhibition of bone resorption, and thus the risk of hypocalcaemia varies between different bisphosphonates. Other risk factors for the development of hypocalcaemia include the presence of osteoblastic metastases, vitamin D deficiency, and renal insufficiency. Hypocalcaemia can lead to treatment interruption, but it is both preventable and manageable. Serum calcium concentrations should be measured, and any pre-existing hypocalcaemia should be corrected, before starting treatment with inhibitors of bone resorption. Once treatment has started, concomitant administration of calcium and vitamin D supplements is essential. Calcium concentrations should be monitored during treatment with bisphosphonates or denosumab, particularly in patients at high risk of hypocalcaemia. If hypocalcaemia is diagnosed, patients should receive treatment with calcium and vitamin D.
Conclusion
With preventative strategies and treatment, patients with prostate cancer who are at risk of, or who develop, hypocalcaemia should be able to continue to benefit from treatment with bisphosphonates or denosumab.
Collapse