1
|
Grignani P, Visonà SD, Fronda MV, Borrelli P, Monti MC, Bertoglio B, Conti A, Fattorini P, Previderè C. The role of single nucleotide polymorphisms related to iron homeostasis in mesothelioma susceptibility after asbestos exposure: a genetic study on autoptic samples. Front Public Health 2023; 11:1236558. [PMID: 37942251 PMCID: PMC10628177 DOI: 10.3389/fpubh.2023.1236558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Asbestos-related diseases still represent a major public health problem all over the world. Among them, malignant mesothelioma (MM) is a poor-prognosis cancer, arising from the serosal lining of the pleura, pericardium and peritoneum, triggered by asbestos exposure. Literature data suggest the key role of iron metabolism in the coating process leading to the formation of asbestos bodies, considered to be both protective and harmful. Two sample sets of individuals were taken into consideration, both residing in Broni or neighboring cities (Northwestern Italy) where an asbestos cement factory was active between 1932 and 1993. The present study aims to compare the frequency of six SNPs involved in iron trafficking, previously found to be related to protection/predisposition to MM after asbestos exposure, between 48 male subjects with documented asbestos exposure who died of MM and 48 male subjects who were exposed to asbestos but did not develop MM or other neoplastic respiratory diseases (Non-Mesothelioma Asbestos Exposed - NMAE). The same analysis was performed on 76 healthy male controls. The allelic and genotypic frequencies of a sub-group of 107 healthy Italian individuals contained in the 1000 genomes database were considered for comparison. PCR-multiplex amplification followed by SNaPshot mini-sequencing reaction was used. The findings presented in this study show that the allelic and genotypic frequencies for six SNP markers involved in iron metabolism/homeostasis and the modulation of tumor microenvironment are not significantly different between the two sample sets of MM and NMAE. Therefore, the SNPs here considered do not seem to be useful markers for individual susceptibility to mesothelioma. This finding is not in agreement with previous literature.
Collapse
Affiliation(s)
- Pierangela Grignani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Vittoria Fronda
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Paola Borrelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Barbara Bertoglio
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Adelaide Conti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, Forensic Medicine Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Carlo Previderè
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
3
|
Dubois F, Bazille C, Levallet J, Maille E, Brosseau S, Madelaine J, Bergot E, Zalcman G, Levallet G. Molecular Alterations in Malignant Pleural Mesothelioma: A Hope for Effective Treatment by Targeting YAP. Target Oncol 2022; 17:407-431. [PMID: 35906513 PMCID: PMC9345804 DOI: 10.1007/s11523-022-00900-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option. Consequently, malignant pleural mesothelioma still represents a significant health concern owing to poor median survival (12-18 months). Given this context, both diagnosis and therapy improvements require better knowledge of the molecular mechanisms underlying malignant pleural mesothelioma's carcinogenesis and progression. Hence, the Hippo pathway in malignant pleural mesothelioma initiation and progression has recently received increasing attention, as the aberrant expression of its core components may be closely related to patient prognosis. The purpose of this review was to provide a critical analysis of our current knowledge on these topics, the main focus being on the available evidence concerning the role of each Hippo pathway's member as a promising biomarker, enabling detection of the disease at earlier stages and thus improving prognosis.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France
| | - Céline Bazille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pathology, CHU de Caen, Caen, France
| | - Jérôme Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Elodie Maille
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
| | - Solenn Brosseau
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Jeannick Madelaine
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Emmanuel Bergot
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France
- Department of Pulmonology and Thoracic Oncology, CHU de Caen, Caen, France
| | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Hospital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot, Paris, France
- U830 INSERM "Genetics and Biology of Cancers, A.R.T Group", Curie Institute, Paris, France
| | - Guénaëlle Levallet
- Normandie University, UNICAEN, CNRS, ISTCT Unit, Avenue H. Becquerel, 14074, Caen, France.
- Department of Pathology, CHU de Caen, Caen, France.
- Federative Structure of Cyto-Molecular Oncogenetics (SF-MOCAE), CHU de Caen, Caen, France.
| |
Collapse
|
4
|
Malakoti F, Targhazeh N, Abadifard E, Zarezadeh R, Samemaleki S, Asemi Z, Younesi S, Mohammadnejad R, Hadi Hossini S, Karimian A, Alemi F, Yousefi B. DNA repair and damage pathways in mesothelioma development and therapy. Cancer Cell Int 2022; 22:176. [PMID: 35501851 PMCID: PMC9063177 DOI: 10.1186/s12935-022-02597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Abadifard
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melbourne, Vic, Australia
| | - Reza Mohammadnejad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hadi Hossini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
The influence of genetic variability in IL1B and MIR146A on the risk of pleural plaques and malignant mesothelioma. Radiol Oncol 2020; 54:429-436. [PMID: 33085641 PMCID: PMC7585336 DOI: 10.2478/raon-2020-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Asbestos exposure is associated with the development of pleural plaques as well as malignant mesothelioma (MM). Asbestos fibres activate macrophages, leading to the release of inflammatory mediators including interleukin 1 beta (IL-1β). The expression of IL-1β may be influenced by genetic variability of IL1B gene or regulatory microRNAs (miRNAs). This study investigated the effect of polymorphisms in IL1B and MIR146A genes on the risk of developing pleural plaques and MM. Subjects and methods In total, 394 patients with pleural plaques, 277 patients with MM, and 175 healthy control subjects were genotyped for IL1B and MIR146A polymorphisms. Logistic regression was used in statistical analysis. Results We found no association between MIR146A and IL1B genotypes, and the risk of pleural plaques. MIR146A rs2910164 was significantly associated with a decreased risk of MM (OR = 0.31, 95% CI = 0.13–0.73, p = 0.008). Carriers of two polymorphic alleles had a lower risk of developing MM, even after adjustment for gender and age (OR = 0.34, 95% CI = 0.14–0.85, p = 0.020). Among patients with known asbestos exposure, carriers of at least one polymorphic IL1B rs1143623 allele also had a lower risk of MM in multivariable analysis (OR = 0.50, 95% CI = 0.28–0.92, p = 0.025). The interaction between IL1B rs1143623 and IL1B rs1071676 was significantly associated with an increased risk of MM (p = 0.050). Conclusions Our findings suggest that genetic variability of inflammatory mediator IL-1β could contribute to the risk of developing MM, but not pleural plaques.
Collapse
|
6
|
Fuso Nerini I, Roca E, Mannarino L, Grosso F, Frapolli R, D'Incalci M. Is DNA repair a potential target for effective therapies against malignant mesothelioma? Cancer Treat Rev 2020; 90:102101. [PMID: 32892058 DOI: 10.1016/j.ctrv.2020.102101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy mainly caused by asbestos exposure. Germinal and acquired mutations in genes of DNA repair pathways, in particular of homologous recombination repair, are frequent in MPM. Here we overview the available experimental data suggesting that an impaired DNA repair system affects MPM pathogenesis by leaving lesions through the genome unresolved. DNA repair defects represent a vulnerability of MPM, and it seems plausible to propose that leveraging these deficiencies could have therapeutic potential for patients with MPM, for whom there is an urgent need of more effective therapies.
Collapse
Affiliation(s)
- Ilaria Fuso Nerini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Roca
- Lung Unit, Thoracic Oncology, Pederzoli Hospital-Peschiera del Garda, Verona, Italy
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federica Grosso
- Mesothelioma Unit, SS Antonio and Biagio General Hospital, Alessandria, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|