1
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Chung HW, Park KS, Lim I, Noh WC, Yoo YB, Nam SE, So Y, Lee EJ. PET/MRI and Novel Targets for Breast Cancer. Biomedicines 2024; 12:172. [PMID: 38255277 PMCID: PMC10813582 DOI: 10.3390/biomedicines12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer, with its global prevalence and impact on women's health, necessitates effective early detection and accurate staging for optimal patient outcomes. Traditional imaging modalities such as mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging (MRI) play crucial roles in local-regional assessment, while bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) aid in evaluating distant metastasis. Despite the proven utility of 18F-FDG PET/CT in various cancers, its limitations in breast cancer, such as high false-negative rates for small and low-grade tumors, have driven exploration into novel targets for PET radiotracers, including estrogen receptor, human epidermal growth factor receptor-2, fibroblast activation protein, and hypoxia. The advent of PET/MRI, which combines metabolic PET information with high anatomical detail from MRI, has emerged as a promising tool for breast cancer diagnosis, staging, treatment response assessment, and restaging. Technical advancements including the integration of PET and MRI, considerations in patient preparation, and optimized imaging protocols contribute to the success of dedicated breast and whole-body PET/MRI. This comprehensive review offers the current technical aspects and clinical applications of PET/MRI for breast cancer. Additionally, novel targets in breast cancer for PET radiotracers beyond glucose metabolism are explored.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
- Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 07812, Republic of Korea;
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Sang Eun Nam
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156 Sinnae-ro, Jungnang-gu, Seoul 02053, Republic of Korea;
| |
Collapse
|