1
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Qian H, Deng C, Chen S, Zhang X, He Y, Lan J, Wang A, Shi G, Liu Y. Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis. Arthritis Res Ther 2024; 26:103. [PMID: 38783357 PMCID: PMC11112866 DOI: 10.1186/s13075-024-03343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a central role in RA pathogenesis and are the main cellular component in the inflamed synovium of patients with rheumatoid arthritis (RA). FLSs are emerging as promising new therapeutic targets in RA. However, fibroblasts perform many essential functions that are required for sustaining tissue homeostasis. Direct targeting of general fibroblast markers on FLSs is challenging because fibroblasts in other tissues might be altered and side effects such as reduced wound healing or fibrosis can occur. To date, no FLS-specific targeted therapies have been applied in the clinical management of RA. With the help of high-throughput technologies such as scRNA-seq in recent years, several specific pathogenic FLS subsets in RA have been identified. Understanding the characteristics of these pathogenic FLS clusters and the mechanisms that drive their differentiation can provide new insights into the development of novel FLS-targeting strategies for RA. Here, we discuss the pathogenic FLS subsets in RA that have been elucidated in recent years and potential strategies for targeting pathogenic FLSs.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Jingying Lan
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Aodi Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| |
Collapse
|
3
|
Su J, Desmarais J, Chu CQ, Zhu J. Potential therapeutic targets of fibrosis in inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol 2024; 38:101945. [PMID: 38627168 DOI: 10.1016/j.berh.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
Fibrosis is commonly associated with chronic rheumatic diseases, and causes substantial morbidity and mortality. Treatment of fibrosis is extremely challenging but is badly needed, as approved antifibrotic therapies fibrosis do not halt its progression, which will be discussed with a focus on pulmonary fibrosis. Findings from recent studies indicate several therapeutic targets for treating fibrosis. Interleukin-11 is emerging as a fibrogenic cytokine whose activity can be blocked with neutralizing monoclonal antibodies. Fibroblast activation protein (FAP) is highly expressed by activated fibroblasts in inflammatory and fibrotic tissues. Targeting FAP with different modalities has been extensively explored as adjunct treatment for cancer, which can also apply to treating fibrosis in rheumatic diseases.
Collapse
Affiliation(s)
- Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Julianna Desmarais
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA; Rheumatology Section, VA Portland Health Care System, Portland, OR, 97239, USA.
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|