1
|
Londoño-Berrío M, Pérez-Buitrago S, Ortiz-Trujillo IC, Hoyos-Palacio LM, Orozco LY, López L, Zárate-Triviño DG, Capobianco JA, Mena-Giraldo P. Cytotoxicity and Genotoxicity of Azobenzene-Based Polymeric Nanocarriers for Phototriggered Drug Release and Biomedical Applications. Polymers (Basel) 2022; 14:polym14153119. [PMID: 35956634 PMCID: PMC9370599 DOI: 10.3390/polym14153119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Drug nanoencapsulation increases the availability, pharmacokinetics, and concentration efficiency for therapeutic regimes. Azobenzene light-responsive molecules experience a hydrophobicity change from a polar to an apolar tendency by trans–cis photoisomerization upon UV irradiation. Polymeric photoresponse nanoparticles (PPNPs) based on azobenzene compounds and biopolymers such as chitosan derivatives show prospects of photodelivering drugs into cells with accelerated kinetics, enhancing their therapeutic effect. PPNP biocompatibility studies detect the safe concentrations for their administration and reduce the chance of side effects, improving the effectiveness of a potential treatment. Here, we report on a PPNP biocompatibility evaluation of viability and the first genotoxicity study of azobenzene-based PPNPs. Cell line models from human ventricular cardiomyocytes (RL14), as well as mouse fibroblasts (NIH3T3) as proof of concept, were exposed to different concentrations of azobenzene-based PPNPs and their precursors to evaluate the consequences on mitochondrial metabolism (MTT assay), the number of viable cells (trypan blue exclusion test), and deoxyribonucleic acid (DNA) damage (comet assay). Lethal concentrations of 50 (LC50) of the PPNPs and their precursors were higher than the required drug release and synthesis concentrations. The PPNPs affected the cell membrane at concentrations higher than 2 mg/mL, and lower concentrations exhibited lesser damage to cellular genetic material. An azobenzene derivative functionalized with a biopolymer to assemble PPNPs demonstrated biocompatibility with the evaluated cell lines. The PPNPs encapsulated Nile red and dofetilide separately as model and antiarrhythmic drugs, respectively, and delivered upon UV irradiation, proving the phototriggered drug release concept. Biocompatible PPNPs are a promising technology for fast drug release with high cell interaction opening new opportunities for azobenzene biomedical applications.
Collapse
Affiliation(s)
- Maritza Londoño-Berrío
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Sandra Pérez-Buitrago
- Academic Department of Engineering, Pontificia Universidad Católica de Perú, San Miguel 15088, Peru;
| | - Isabel Cristina Ortiz-Trujillo
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Lina M. Hoyos-Palacio
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Luz Yaneth Orozco
- Grupo de Investigación Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia; (M.L.-B.); (I.C.O.-T.); (L.M.H.-P.); (L.Y.O.)
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin 050036, Colombia;
| | - Diana G. Zárate-Triviño
- Immunology and Virology Laboratory, Universidad Autónoma de Nuevo León, Monterrey 64450, Mexico;
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada;
| | - Pedro Mena-Giraldo
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada;
- Correspondence:
| |
Collapse
|
2
|
Perez-Buitrago S, Mena-Giraldo P, Pinal R, Hoyos-Palacio L. Azopolymer based nanoparticles for phototriggered drug delivery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1089-1092. [PMID: 31946083 DOI: 10.1109/embc.2019.8856432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controlled release by stimulus-responsive nanoparticles is oriented to increase the specificity of drug delivery, to improve the therapy effectiveness and minimizing side effects. This work presents the synthesis of photosensitive-polymeric nanoparticles as a potential system for localized drug delivery. First, the photoisomerizable amphiphilic-copolymer poly2-[4-phenylazophenoxy]ethyl acrylate-co-acrylic acid (PPAPE), was synthesized. Then, PPAPE was employed to prepare micellar nanoparticles by the nanoprecipitation method. Characterizations of the polymer were performed by proton nuclear magnetic resonance, X-ray photoelectron spectroscopy and FTIR spectroscopy. The morphology of the nanoparticles was analyzed by dynamic light scattering and transmission electron microscopy. Also, photostimulation response was confirmed by UV-VIS spectroscopy. Results indicate that the obtained photoresponsive nanoparticles have the size and photoisomerization necessary to perform the specific release of drugs.
Collapse
|
3
|
Zheng Y, Zhang X, Li J. Synthesis and Photochromism Properties of Anionic Waterborne Polyurethane Containing Azobenzene Chromophores. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.1080104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Filip D, Macocinschi D, Gradinaru L. Thermal and surface characteristics of some β-cyclodextrin-based side-chain azo amphiphilic polyurethanes. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Abstract
AbstractThermo-sensitive polymers are of outstanding importance due to their ability to undergo controlled major changes in their properties as a response to minor modifications in temperature. The syntheses of novel polymers by grafting polysiloxane containing chlorobenzyl groups in the side chain by the homopolymerization of N,N′-dimethyl acrylamide (DMA) or the copolymerization of DMA and methyl methacrylate (MMA) using SET-LRP technique are presented. The polymers were characterized by 1H-NMR, UV, and fluorescence spectroscopy, and DSC. The thermo-sensitivity and the lower critical solution temperature (LCST), as well as the aggregation phenomena during the phase transition are evidenced by dynamic light scattering (DLS) and rheology.
Collapse
|