1
|
Zuo H, Zheng T, Wu K, Yang T, Wang L, Nima Q, Bai H, Dong K, Fan Z, Huang S, Luo R, Wu J, Zhou J, Xu H, Zhang Y, Feng S, Zeng P, Xiao X, Guo B, Wei Y, Pei X, Zhao X. High-altitude exposure decreases bone mineral density and its relationship with gut microbiota: Results from the China multi-ethnic cohort (CMEC) study. ENVIRONMENTAL RESEARCH 2022; 215:114206. [PMID: 36058270 DOI: 10.1016/j.envres.2022.114206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Geographic altitude is a potent environmental factor for human microbiota and bone mineral density. However, little evidence exists in population-based studies with altitude diversity ranges across more than 3000 m. This study assessed the associations between a wide range of altitudes and bone mineral density, as well as the potential mediating role of microbiota in this relationship. METHODS A total of 99,556 participants from the China Multi-Ethnic Cohort (CMEC) study were enrolled. The altitude of each participant was extracted from global Shuttle Radar Topography Mission (SRTM) 4 data. Bone mineral density was measured by calcaneus quantitative ultrasound index (QUI). Stool samples were collected for 16S rRNA gene sequencing (n = 1384). The metabolites of gut microbiota, seven kinds of short-chain fatty acids (SCFAs), were detected by gas chromatography-mass spectrometry (GC-MS, n = 128). After screening, 73,974 participants were selected for the "altitude-QUI" analysis and they were placed into the low-altitude (LA) and high-altitude (HA) groups. Additionally, a subgroup (n = 1384) was further selected for the "altitude-microbiota-QUI" analysis. Multivariate linear regression models and mediation analyses were conducted among participants. RESULTS A significant negative association between high-altitude and QUI was obtained (mean difference = -0.373 standard deviation [SD], 95% confidence interval [CI]: -0.389, -0.358, n = 73,974). The same negative association was also observed in the population with microbiota data (mean difference = -0.185 SD, 95%CI: -0.360, -0.010, n = 1384), and a significant mediating effect of Catenibacteriumon on the association between altitude and QUI (proportion mediated = 25.2%, P = 0.038) was also noticed. Additionally, the acetic acid, butyric acid, and total amount of seven SCFAs of the low-altitude group were significantly higher than that of the high-altitude group (P < 0.05). CONCLUSION High-altitude exposure may decrease bone mineral density in adults, thus increasing the risk of osteoporosis. The modulation of gut microbiota may be a potential strategy for alleviating the decrease of bone mineral density.
Collapse
Affiliation(s)
- Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Kunpeng Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Tingting Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Lingyao Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Qucuo Nima
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, 850000, China.
| | - Hua Bai
- College of Public Health, Kunming Medical University, Kunming, 650500, China.
| | - Ke Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Ziwei Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Ruocheng Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Junmin Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yingcong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yonglan Wei
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, 610041, China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, 610041, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
3
|
Lizondo V, Caplliure-Llopis J, Escrivá D, De La Rubia JE, Barrios C. Bone quality in young adults with intellectual disability involved in adapted competitive football. Eur J Sport Sci 2019; 19:850-859. [PMID: 30624162 DOI: 10.1080/17461391.2018.1563633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to analyse bone quality parameters of football players with intellectual disability (ID) participating in adapted competitive football. Sixty-seven male football players with ID were studied: 22 with Down syndrome (DS) and 45 without DS. The average age was 26 years (range: 16 ̶ 50 years). A group of 25 age-matched sedentary individuals with ID (11 DS and 14 non-DS) and another group of 20 healthy participants of the same age group not involved in competitive football were comparatively analysed. There were no differences in the bone quality parameters when the healthy sedentary individuals were compared with both the sedentary and the football players with ID. However, the speed of sound (SOS), T-score, and estimated bone mineral density (BMD) were of higher values in the football players with ID than in the sedentary ID group (p < 0.05). On comparing the football players with non-DS ID with the sedentary non-DS individuals, significant differences were noted in SOS (p < 0.01), T-scores (p < 0.01), and estimated BMD (p < 0.01). Four of the 45 non-DS (8.9%) and none of the football players with DS had T-scores less than -1.5. Two of the 14 sedentary non-DS participants (14.3%) had T-scores indicating osteoporosis. In summary, the ID population actively involved in football showed higher values of bone mass parameters than their sedentary ID and healthy peers. The participants with non-DS ID showed a higher prevalence of osteoporosis than the football players with DS. Participation in sports seems to prevent bone loss in individuals with ID.
Collapse
Affiliation(s)
- Vicente Lizondo
- a School of Doctorate , Valencia Catholic University , Valencia , Spain
| | | | - Dolores Escrivá
- b Nursing School , Valencia Catholic University , Valencia , Spain
| | | | - Carlos Barrios
- c Institute for Research on Musculoskeletal Disorders , Valencia Catholic University , Valencia , Spain
| |
Collapse
|
4
|
Pisani P, Renna MD, Conversano F, Casciaro E, Di Paola M, Quarta E, Muratore M, Casciaro S. Major osteoporotic fragility fractures: Risk factor updates and societal impact. World J Orthop 2016; 7:171-81. [PMID: 27004165 PMCID: PMC4794536 DOI: 10.5312/wjo.v7.i3.171] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a silent disease without any evidence of disease until a fracture occurs. Approximately 200 million people in the world are affected by osteoporosis and 8.9 million fractures occur each year worldwide. Fractures of the hip are a major public health burden, by means of both social cost and health condition of the elderly because these fractures are one of the main causes of morbidity, impairment, decreased quality of life and mortality in women and men. The aim of this review is to analyze the most important factors related to the enormous impact of osteoporotic fractures on population. Among the most common risk factors, low body mass index; history of fragility fracture, environmental risk, early menopause, smoking, lack of vitamin D, endocrine disorders (for example insulin-dependent diabetes mellitus), use of glucocorticoids, excessive alcohol intake, immobility and others represented the main clinical risk factors associated with augmented risk of fragility fracture. The increasing trend of osteoporosis is accompanied by an underutilization of the available preventive strategies and only a small number of patients at high fracture risk are recognized and successively referred for therapy. This report provides analytic evidences to assess the best practices in osteoporosis management and indications for the adoption of a correct healthcare strategy to significantly reduce the osteoporosis burden. Early diagnosis is the key to resize the impact of osteoporosis on healthcare system. In this context, attention must be focused on the identification of high fracture risk among osteoporotic patients. It is necessary to increase national awareness campaigns across countries in order to reduce the osteoporotic fractures incidence.
Collapse
|
5
|
Conversano F, Franchini R, Greco A, Soloperto G, Chiriacò F, Casciaro E, Aventaggiato M, Renna MD, Pisani P, Di Paola M, Grimaldi A, Quarta L, Quarta E, Muratore M, Laugier P, Casciaro S. A novel ultrasound methodology for estimating spine mineral density. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:281-300. [PMID: 25438845 DOI: 10.1016/j.ultrasmedbio.2014.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 05/10/2023]
Abstract
We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used for US spectral model construction and a study population for repeatability and accuracy evaluation. US images and radiofrequency signals were analyzed via a new fully automatic algorithm that performed a series of spectral and statistical analyses, providing a novel diagnostic parameter called the osteoporosis score (O.S.). If dual X-ray absorptiometry is assumed to be the gold standard reference, the accuracy of O.S.-based diagnoses was 91.1%, with k = 0.859 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral densities and corresponding dual X-ray absorptiometry values, with r(2) values up to 0.73 and a root mean square error of 6.3%-9.3%. The results obtained suggest that the proposed method has the potential for future routine application in US-based diagnosis of osteoporosis.
Collapse
Affiliation(s)
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Giulia Soloperto
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Fernanda Chiriacò
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Ernesto Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Marco Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Antonella Grimaldi
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Laura Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Eugenio Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Maurizio Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Pascal Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC 06, INSERM, CNRS, Paris, France
| | - Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
6
|
Potential role of FRAX analysis in postmenopausal women with osteopenia. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEarly diagnosis of osteoporosis and estimation of subjects that are at high risk for fracture, is neccesary for osteoporosis treatment. Dual-energy X-ray absorptometry (DXA) is a modern method for bone mineral density (BMD) evaluation. However, along BMD, clinical risk factors may significantly influence fracture development. Therefore, FRAX algorithm was designed for the assessment of a ten-year risk for serious osteoporotic fractures (SOF), as well as hip fractures. In the current study, we tried to evaluate the possible lumbal spine and hip BMD influence on ten year risk for SOF and hip fractures and potential role of FRAX in predicting the therapy in postmenopausal women with osteopenia. We performed the study on 385 postmenopausal women. According to the DXA measurements, at the lumbal (L) spine (L1–L4) and hip (femor neck), patients were then classified as normal, osteopenic, or osteoporotic. BMD evaluation included the L spine and the hip (subgroup 1), and only on the L spine (subgroup 2). By filling up the FRAX questionnaire, a ten-year risk for SOF fracture and hip fracture was calculated. BMD evaluation, in complete patient’s group and in subgroup 1, resulted in the highest number of osteoporosis (61.04%, 48.08%, retrospectively), while ospeopenia was a main finding in subgroup 2. In the subgroup 1, a high risk for SOF and hip fracture was detected in 16.45% and with high risk for hip fracture in 11.38% subjects. In subgroup 2, only high risk for hip fracture was observed in 3.16% subjects, indicating the active medicament treatment. Simultaneously, correlation of BMD results with FRAX values for SOF and hip fracture, showed significant negative correlation (p<0.001). Obtained results showed significant role of femur neck BMD evaluation in predicting the future factors, which may, together with FRAX analysis, improve the therapy approach in postmenopausal women with ospeopenia.
Collapse
|