1
|
Sun Y, Gu Y, Gao X, Jin X, Wink M, Sharopov FS, Yang L, Sethi G. Lycorine suppresses the malignancy of breast carcinoma by modulating epithelial mesenchymal transition and β-catenin signaling. Pharmacol Res 2023; 195:106866. [PMID: 37499704 DOI: 10.1016/j.phrs.2023.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lycorine, an isoquinoline alkaloid can exhibit significant anti-cancer effects. The present study was conducted to illustrate the underlying mechanisms of action of lycorine on breast carcinoma under in vitro and in vivo settings Tandem Mass Tag assay and Kyoto Encyclopedia of Genes and Genomes analysis revealed that 20 signaling pathways were closely related to tumorigenesis, especially Wnt signaling pathway and tight junctions. The results demonstrated that lycorine evidently inhibited the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 1.84 ± 0.21 μM and 7.76 ± 1.16 μM, respectively. It also blocked cell cycle in G2/M phase, caused a decrease in mitochondrial membrane potential, and induced apoptosis pathways through regulating caspase-3, caspase-8, caspase-9, and PARP expression. Moreover, lycorine effectively repressed the β-catenin signaling and reversed epithelial-mesenchymal transition (EMT) process. Furthermore, 4T1/Luc homograft tumor model was used to further demonstrate that lycorine significantly inhibited the growth and metastasis of breast tumor. These findings highlight the significance of lycorine as potential anti-neoplastic agent to combat breast cancer.
Collapse
Affiliation(s)
- Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China.
| | - Yi Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928, No.2 Street, Qiantang District, Hangzhou 310018, China
| | - Xiaoyan Jin
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, Heidelberg 69120, Germany
| | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", National Academy of Sciences of Tajikistan, No. 267, Айнй Road, Dushanbe 734025, Tajikistan
| | - Linjun Yang
- Department of Surgical Oncology, Zhejiang Taizhou Municipal Hospital, No. 218, Hengjie Road, Taizhou 318020, China.
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore..
| |
Collapse
|
2
|
Nipic D, Pirc A, Banic B, Suput D, Milisav I. Preapoptotic cell stress response of primary hepatocytes. Hepatology 2010; 51:2140-51. [PMID: 20513000 DOI: 10.1002/hep.23598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Primary hepatocytes are an important in vitro model for studying metabolism in man. Caspase-9 and Bcl-2-associated X protein (Bax) are regulators of the apoptotic pathway. Here we report on the translocation of procaspase-9 and Bax from cytoplasm to nuclei as well as on dispersion of mitochondria; these processes occur after isolation of primary hepatocytes. The observed changes appear similar to those at the beginning of apoptosis; however, the isolated hepatocytes are not apoptotic for the following reasons: (1) cells have a normal morphology and function; (2) the mitochondria are energized; (3) there is no apoptosis unless it is induced by, e.g., staurosporine or nodularin. Staurosporine does not trigger apoptosis through activation of caspase-9, as its activity is detected later than that of caspase-3. We propose that the translocation of procaspase-9 and Bax into the nuclei reduces the ability to trigger apoptosis through the intrinsic apoptotic pathway. The shifts of procaspase-9 and Bax are reversible in the absence of the apoptotic trigger; the spontaneous reversion was confirmed experimentally for procaspase-9, whereas Bax shifted from the nuclei to the cytosol and mitochondria after the initiation of apoptosis. To distinguish this process from apoptosis, we call it preapoptotic cell stress response. It shares some features with apoptosis; however, it is reversible and apoptosis has to be induced in addition to this process. CONCLUSION Knowledge on preapoptotic cell stress response is important for assessing the quality of the cells used in cell therapies, in regenerative medicine, and of those used for modeling metabolic processes.
Collapse
Affiliation(s)
- Damijan Nipic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
3
|
Abstract
Caspase-3 is one of the main executors of apoptosis. Its zymogen procaspase-3 was localized to cytosol, mitochondria and nuclei. The subcellular location of procaspase-3 in liver was reported by several studies to be either cytosolic or cytosolic and mitochondrial. Our aim was to investigate these separate procaspase-3 pools to differentiate the pathways of their activation. By cell fractionation, immunocytochemistry, and confocal microscopy we report that there is a single procaspase-3 pool located to the cytosol in primary hepatocytes and in fractions of rat liver. In contrast, it depends on the isolation purity whether procaspase-3 is located in mitochondria of non-parenchymal liver cells, or not. All preparations with mitochondrial procaspase-3 fractions contain traces of haemoglobin, indicating the presence of some erythrocytes, which are the source of mitochondrial procaspase-3. Since erythrocytes migrate with mitochondria in subcellular fractionations, it is important to check for haemoglobin, before localizing the protein to mitochondria.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, University of Ljubljana, Zaloska, Slovenia.
| | | | | |
Collapse
|