1
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
2
|
Fang X, Hu JF, Hu QY, Li H, Sun ZJ, Xu Z, Zhang L. ROS-responsive resveratrol-loaded cyclodextrin nanomicelles reduce inflammatory osteolysis. Colloids Surf B Biointerfaces 2022; 219:112819. [PMID: 36137333 DOI: 10.1016/j.colsurfb.2022.112819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
Bone loss in inflammatory disorders such as osteomyelitis, septic arthritis, and periodontitis is caused by excessive osteoclastic activity. Meanwhile, reactive oxygen species (ROS) have been identified as contributors to osteoclast differentiation, and the application of ROS scavengers has emerged as a promising strategy to protect against bone loss. Recently, resveratrol (RSV), a polyphenolic phytoalexin, has been demonstrated to inhibit osteoclastogenesis by scavenging ROS; however, the application of RSV as an antioxidant is limited by its low water solubility, structural instability, and short elimination half-life. In this study, we developed a PEGylated cyclodextrin (CD)-based nanoplatform (PCP) for local delivery of RSV as nanomicelles (RSV-NMs). In addition, polymer functionalization with phenylboronic acid ester in RSV-NMs successfully achieved ROS-responsive release of RSV. The RSV-NMs in a well-dispersed state possessed good biocompatibility as well as improved solubility and stability compared with RSV compound. In vitro, RSV-NMs significantly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells and suppressed F-actin (filamentous actin) ring formation. Additionally, the mRNA expressions of osteoclastic marker genes, including matrix metalloprotein-9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), TRAP, and cathepsin K, were consequently downregulated in the presence of RSV-NMs. In vivo, RSV-NMs provided protection against LPS-induced bone destruction, as evidenced by a decreased number of osteoclasts, increased bone density, and reduced area of bone resorption. Taken together, these results indicate that our ROS-responsive RSV-NMs can be employed as a potential therapeutic agent for the treatment of inflammatory osteolysis.
Collapse
Affiliation(s)
- Xiaolin Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Feng Hu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Qing-Yun Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China.
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Spicer LJ, Schütz LF. Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro. Food Chem Toxicol 2022; 167:113288. [PMID: 35820639 DOI: 10.1016/j.fct.2022.113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Myricetin (a flavonol) and piceatannol (a stilbenoid) are naturally occurring phenolic compounds in red wine with cardio-protective and anti-carcinogenic effects, but their potential reproductive effects have not been investigated. Thus, the present study was designed to determine if myricetin and piceatannol can directly affect ovarian function using bovine granulosa cells (GC) and theca cells (TC) as in vitro model systems to evaluate effects on cell proliferation and steroid production. In Experiment 1 and 2, myricetin and piceatannol at 30 μM blocked insulin-like growth factor 1 (IGF1)-induced progesterone production by GC without affecting GC numbers. In contrast, myricetin stimulated IGF1-induced estradiol production, whereas piceatannol at 30 μM inhibited IGF1-induced estradiol production by 90% in GC. In Experiment 3 and 4, TC androstenedione and progesterone production and TC proliferation was inhibited by myricetin and piceatannol at 30 μM. In Experiment 5, piceatannol (30 μM) reduced the Fusarium mycotoxin, beauvericin (6 μM)-induced inhibition on progesterone production and cell proliferation. Myricetin (30 μM) reduced the inhibitory effect of beauvericin on estradiol but not progesterone production or cell proliferation. In conclusion, the red wine phenols, myricetin and piceatannol, directly affected GC and TC steroidogenesis, and were able to reduce some of the inhibitory effects of beauvericin on GC function.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Toxicological Evaluation of Piceatannol, Pterostilbene, and ε-Viniferin for Their Potential Use in the Food Industry: A Review. Foods 2021; 10:foods10030592. [PMID: 33799882 PMCID: PMC7998146 DOI: 10.3390/foods10030592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The application of stilbenes in the food industry is being considered because of their biological activities. Piceatannol, pterostilbene and ε-viniferin have awakened the industry’s interest. However, before they can be commercialized, we must first guarantee their safety for consumers. The present work reviews the toxicological studies performed with these stilbenes. A wide variety of studies has demonstrated their cytotoxic effects in both cancer and non-cancerous cell lines. In contrast, although DNA damage was detected by some authors, in vitro genotoxic studies on the effects of piceatannol, pterostilbene, and ε-viniferin remain scarce. None of the three reviewed substances have been evaluated using the in vitro tests required by the European Food Safety Authority (EFSA) as the first step in genotoxicity testing. We did not find any study on the toxic effects of these stilbenes in vivo. Thus, more studies are needed to confirm their safe use before they can be authorized as additive in the food industry.
Collapse
|
5
|
Peñalver P, Zodio S, Lucas R, de-Paz MV, Morales JC. Neuroprotective and Anti-inflammatory Effects of Pterostilbene Metabolites in Human Neuroblastoma SH-SY5Y and RAW 264.7 Macrophage Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1609-1620. [PMID: 31957426 DOI: 10.1021/acs.jafc.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress is known to be a key factor in many neurodegenerative diseases. Inflammation also plays a relevant role in a myriad of pathologies such as diabetes and atherosclerosis. Polyphenols coming from dietary sources, such as pterostilbene, may be beneficial in this type of diseases. However, most of them are rapidly metabolized and excreted, yielding very low phenolic bioavailability what makes it difficult to find out which are the mechanisms responsible for the observed bioactivity. Herein, we evaluate the effects of pterostilbene and its metabolites against H2O2-induced cell damage in human neuroblastoma SH-SY5Y cells and against lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages. Among the metabolites tested, 3-methyl-4'-glucuronate-resveratrol (also called 4'-glucuronate pinostilbene, PIN-GlcAc, 11) prevented neuronal death via attenuation of reactive oxygen species (ROS) levels and increased REDOX activity in neurons. This compound is also able to ameliorate LPS-mediated inflammation on macrophages via inhibition of IL-6 and NO production. Thus, polyphenol from dietary sources could be part of potential functional foods designed to ameliorate the onset and progression of certain neurodegenerative diseases via oxidative stress reduction.
Collapse
Affiliation(s)
- Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra, CSIC , PTS Granada, Avda. del Conocimiento, 17 , 18016 Armilla , Granada , Spain
| | - Sonia Zodio
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra, CSIC , PTS Granada, Avda. del Conocimiento, 17 , 18016 Armilla , Granada , Spain
| | - Ricardo Lucas
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy , University of Seville , c/Prof. García González, 2 , 41012 Seville , Spain
| | - María Violante de-Paz
- Department of Organic and Pharmaceutical Chemistry, School of Pharmacy , University of Seville , c/Prof. García González, 2 , 41012 Seville , Spain
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra, CSIC , PTS Granada, Avda. del Conocimiento, 17 , 18016 Armilla , Granada , Spain
| |
Collapse
|
6
|
Luzardo-Álvarez A, Lamela-Gómez I, Otero-Espinar F, Blanco-Méndez J. Development, Characterization, and In Vitro Evaluation of Resveratrol-Loaded Poly-(ε-caprolactone) Microcapsules Prepared by Ultrasonic Atomization for Intra-Articular Administration. Pharmaceutics 2019; 11:E249. [PMID: 31141945 PMCID: PMC6631008 DOI: 10.3390/pharmaceutics11060249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
: Intra-articular administration of drugs to the joint in the treatment of joint disease has the potential to minimize the systemic bioavailability and the usual side-effects associated with oral drug administration. In this work, a drug delivery system is proposed to achieve an anti-inflammatory local effect using resveratrol (RSV). This study aims to develop microcapsules made of poly-(ε-caprolactone) (PCL) by ultrasonic atomization to preserve the antioxidant activity of RSV, to prevent its degradation and to suppress the inflammatory response in activated RAW 264.7 macrophages. An experimental design was performed to build a mathematical model that could estimate the effect of nozzle power and polymer concentration on particle size and encapsulation efficiency. RSV-loaded microcapsules showed adequate morphology, particle size, and loading efficiency properties. RSV formulations exhibited negligible cytotoxicity and an efficient amelioration of inflammatory responses, in terms of Nitric Oxide (NO), ROS (Reactive Oxygen Species), and lipid peroxidation in macrophages. Thus, RSV-loaded microcapsules merit consideration as a drug delivery system suitable for intra-articular administration in inflammatory disorders affecting the joint.
Collapse
Affiliation(s)
- Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Iván Lamela-Gómez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
| | - Francisco Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| | - José Blanco-Méndez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus de Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela 14875, Spain.
| |
Collapse
|
7
|
Nieto-Domínguez M, de Eugenio LI, Peñalver P, Belmonte-Reche E, Morales JC, Poveda A, Jiménez-Barbero J, Prieto A, Plou FJ, Martínez MJ. Enzymatic Synthesis of a Novel Neuroprotective Hydroxytyrosyl Glycoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10526-10533. [PMID: 29119794 DOI: 10.1021/acs.jafc.7b04176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The eco-friendly synthesis of non-natural glycosides from different phenolic antioxidants was carried out using a fungal β-xylosidase to evaluate changes in their bioactivities. Xylosides from hydroquinone and catechol were successfully formed, although the best results were obtained for hydroxytyrosol, the main antioxidant from olive oil. The formation of the new products was followed by thin-layer chromatography, liquid chromatography, and mass spectrometry. The hydroxytyrosyl xyloside was analyzed in more detail, to maximize its production and evaluate the effect of glycosylation on some hydroxytyrosol properties. The synthesis was optimized up to the highest production reported for a hydroxytyrosyl glycoside. The structure of this compound was solved by two-dimensional nuclear magnetic resonance and identified as 3,4-dihydroxyphenyl-ethyl-O-β-d-xylopyranoside. Evaluation of its biological effect showed an enhancement of both its neuroprotective capacity and its ability to ameliorate intracellular levels of reactive oxygen species.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC) , Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | - Efres Belmonte-Reche
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC) , Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | - Juan Carlos Morales
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC) , Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18016 Armilla, Granada, Spain
| | - Ana Poveda
- Center for Cooperative Research in Biosciences , Parque Científico Tecnológico de Bizkaia Building 801A, 48160 Derio, Biscay, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences , Parque Científico Tecnológico de Bizkaia Building 801A, 48160 Derio, Biscay, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC) , Marie Curie 2, 28049 Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
8
|
Kershaw J, Kim KH. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J Med Food 2017; 20:427-438. [PMID: 28387565 DOI: 10.1089/jmf.2017.3916] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metabolic disease comprises a set of risk factors highly associated with obesity and insulin resistance and is a consequence of central adiposity, hyperglycemia, and dyslipidemia. Furthermore, obesity increases the risk of the development of metabolic disease due to ectopic fat deposition, low-grade inflammation, and systemic energy disorders caused by dysregulated adipose tissue function. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and has been reported to exhibit anticancer and anti-inflammatory properties. In addition, recently reported beneficial effects of piceatannol on hypercholesterolemia, atherosclerosis, and angiogenesis underscore its therapeutic potential in cardiovascular disease. However, investigation of its role in metabolic disease is still in its infancy. This review intensively summarizes in vitro and in vivo studies supporting the potential therapeutic effects of piceatannol in metabolic disease, including inhibition of adipogenesis and lipid metabolism in adipocytes, and regulation of hyperlipidemia, hyperglycemia, insulin resistance, and fatty acid-induced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jonathan Kershaw
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA
| | - Kee-Hong Kim
- 1 Department of Food Science, Purdue University , West Lafayette, Indiana, USA .,2 Purdue Center for Cancer Research, Purdue University , West Lafayette, Indiana, USA
| |
Collapse
|
9
|
Dziki JL, Wang DS, Pineda C, Sicari BM, Rausch T, Badylak SF. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J Biomed Mater Res A 2016; 105:138-147. [DOI: 10.1002/jbm.a.35894] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jenna L. Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Derek S. Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Catalina Pineda
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Brian M. Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Theresa Rausch
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Surgery; University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
10
|
Achy-Brou CAA, Billack B. Lipopolysaccharide Attenuates the Cytotoxicity of Resveratrol in Transformed Mouse Macrophages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:272-276. [PMID: 27277074 DOI: 10.1007/s11130-016-0556-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resveratrol and pterostilbene are natural products that are present in plants and have been incorporated into various dietary supplements. Numerous beneficial pharmacologic effects have been reported for these stilbenes; however, the mechanism by which these compounds exert a cytotoxic effect in RAW 264.7 macrophages has not been well characterized. We have previously described that resveratrol is toxic to these tumor-derived macrophages and that stimulation with lipopolysaccharide (LPS) reduces resveratrol toxicity via a mechanism that involves activation of toll like receptor 4. In the present work, we examined the cellular and molecular effects of resveratrol and the related compound pterostilbene by determining cell viability and caspase 3 activity in control and LPS-stimulated RAW 264.7 macrophages incubated with these stilbenes for 24 h. We found that LPS stimulation reduced the cytotoxicity of resveratrol but not of pterostilbene in these cells. When examined for effects on caspase 3 activation after a 24 h incubation, resveratrol and pterostilbene were each found to separately and significantly increase caspase 3 activity in these cells. LPS stimulation prevented caspase 3 activation by pterostilbene and reduced caspase 3 activation by resveratrol in RAW 264.7 macrophages. The data presented here indicate that LPS induces a phenotype switch in tumor-derived RAW 264.7 macrophages in which cells experiencing LPS in the presence of resveratrol or pterostilbene become less likely to activate the pro-apoptotic factor caspase 3.
Collapse
Affiliation(s)
- Christelle A Adiabouah Achy-Brou
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY, 11439, USA.
| |
Collapse
|
11
|
Adiabouah Achy-Brou CA, Billack B. A comparative assessment of the cytotoxicity and nitric oxide reducing ability of resveratrol, pterostilbene and piceatannol in transformed and normal mouse macrophages. Drug Chem Toxicol 2016; 40:36-46. [PMID: 27079867 DOI: 10.3109/01480545.2016.1169542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the pharmacological effects of three stilbenoids, resveratrol (RES), pterostilbene (PTR) and piceatannol (PIC), in transformed and normal macrophages. Our first aim was to comparatively assess the cytotoxicity of RES, PTR and PIC in unstimulated transformed mouse macrophages (RAW 264.7 cells) and primary peritoneal macrophages (PMs) harvested from both wild type and Nrf2 (nuclear factor erythroid 2-related factor 2)-deficient female mice. Our second aim was to investigate whether the inhibitory effect of RES, PTR and PIC on nitric oxide (NO) release from stimulated PMs depends on the status of the transcription factor Nrf2. The rationale for investigating Nrf2 status was based upon recent reports showing that certain compounds (sulforaphane and linalool) suppress LPS-induced inflammation in an Nrf2-dependent manner. Cell viability studies confirmed our prior work in unstimulated RAW 264.7 cells, with cytotoxic potency decreasing in the order of PTR > PIC > RES. Unstimulated PMs, regardless of Nrf2 status, were less sensitive to stilbenes, requiring at least a threefold higher stilbene concentration to inhibit cell viability, with cytotoxic potency again decreasing in the order of PTR > PIC > RES. In studies focused on our second aim, IC50 values for NO inhibition (measured as [Formula: see text]) in wild type PMs were similar for all three stilbenes (∼10 μM). In Nrf2-deficient PMs, the IC50 for NO inhibition by PIC did not change; however, a rightward shift in the concentration effect curve was observed for both RES and PTR, indicating a role for Nrf2 in the suppression of LPS-induced [Formula: see text] accumulation by these particular stilbenes.
Collapse
Affiliation(s)
| | - Blase Billack
- a Department of Pharmaceutical Sciences , College of Pharmacy and Health Sciences, St. John's University , Jamaica , NY , USA
| |
Collapse
|
12
|
Trotta V, Lee WH, Loo CY, Young PM, Traini D, Scalia S. Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages. Eur J Pharm Sci 2016; 86:20-8. [PMID: 26944422 DOI: 10.1016/j.ejps.2016.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Abstract
Oxidative stress is instrumental in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Novel therapeutic strategies that target macrophages, based on the use of antioxidant compounds, could be explored to improve corticosteroid responses in COPD patients. In this study, inhalable microparticles containing budesonide (BD) and resveratrol (RES) were prepared and characterized. This approach was undertaken to develop a multi-drug inhalable formulation with anti-oxidant and anti-inflammatory activities for treatment of chronic lung diseases. The inhalable microparticles containing different ratios of BD and RES were prepared by spray drying. The physico-chemical properties of the formulations were characterized in terms of surface morphology, particle size, physical and thermal stability. Additionally, in vitro aerosol performances of these formulations were evaluated with the multi-stage liquid impinger (MSLI) at 60 and 90 l/min, respectively. The cytotoxicity effect of the formulations was evaluated using rat alveolar macrophages. The biological responses of alveolar macrophages in terms of cytokine expressions, nitric oxide (NO) production and free radical scavenging activities were also tested. The co-spray dried (Co-SD) microparticles of all formulations exhibited morphologies appropriate for inhalation administration. Analysis of the deposition profiles showed an increase in aerosol performance proportional to BD concentration. Cell viability assay demonstrated that alveolar macrophages could tolerate a wide range of RES and BD concentrations. In addition, RES and BD were able to decrease the levels of tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS) induced alveolar macrophages. This study has successfully established the manufacture of Co-SD formulations of RES and BD with morphology and aerosol properties suitable for inhalation drug delivery, negligible in vitro toxicity and enhanced efficacy to control inflammation and oxidative stress in LPS-induced alveolar macrophages.
Collapse
Affiliation(s)
- Valentina Trotta
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Wing-Hin Lee
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Ching-Yee Loo
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | - Santo Scalia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Banaganapalli B, Mulakayala C, Pulaganti M, Mulakayala N, Anuradha CM, Suresh Kumar C, Shaik NA, Yousuf Al-Aama J, Gudla D. Experimental and Computational Studies on Newly Synthesized Resveratrol Derivative: A New Method for Cancer Chemoprevention and Therapeutics? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:568-83. [DOI: 10.1089/omi.2013.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Babajan Banaganapalli
- DBT-Bioinformatics Infrastructure Facility, Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Chaitanya Mulakayala
- Department of Biosciences, Sri Satya Sai Institute of Higher Learning, Anantapur, India
| | - Madhusudana Pulaganti
- DBT-Bioinformatics Infrastructure Facility, Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Naveen Mulakayala
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - CM Anuradha
- DBT-Bioinformatics Infrastructure Facility, Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Chitta Suresh Kumar
- DBT-Bioinformatics Infrastructure Facility, Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, India
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Dhananjaya Gudla
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| |
Collapse
|
14
|
Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids 2013; 45:393-401. [DOI: 10.1007/s00726-013-1518-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023]
|
15
|
Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 750:60-82. [DOI: 10.1016/j.mrrev.2011.11.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 01/27/2023]
|
16
|
González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51:331-62. [PMID: 21432698 DOI: 10.1080/10408390903584094] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a family of polyphenolic compounds which are widespread in nature (vegetables) and are consumed as part of the human diet in significant amounts. There are other types of polyphenols, including, for example, tannins and resveratrol. Flavonoids and related polyphenolic compounds have significant antiinflammatory activity, among others. This short review summarizes the current knowledge on the effects of flavonoids and related polyphenolic compounds on inflammation, with a focus on structural requirements, the mechanisms involved, and pharmacokinetic considerations. Different molecular (cyclooxygenase, lipoxygenase) and cellular targets (macrophages, lymphocytes, epithelial cells, endothelium) have been identified. In addition, many flavonoids display significant antioxidant/radical scavenging properties. There is substantial structural variation in these compounds, which is bound to have an impact on their biological profile, and specifically on their effects on inflammatory conditions. However, in general terms there is substantial consistency in the effects of these compounds despite considerable structural variations. The mechanisms have been studied mainly in myeloid cells, where the predominant effect is an inhibition of NF-κB signaling and the downregulation of the expression of proinflammatory markers. At present there is a gap in knowledge of in vitro and in vivo effects, although the pharmacokinetics of flavonoids has advanced considerably in the last decade. Many flavonoids have been studied for their intestinal antiinflammatory activity which is only logical, since the gastrointestinal tract is naturally exposed to them. However, their potential therapeutic application in inflammation is not restricted to this organ and extends to other sites and conditions, including arthritis, asthma, encephalomyelitis, and atherosclerosis, among others.
Collapse
Affiliation(s)
- R González
- Department of Pharmacology, CIBERehd, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Kang L, Heng W, Yuan A, Baolin L, Fang H. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: Relative to inhibition of inflammatory responses. Biochimie 2010; 92:789-96. [DOI: 10.1016/j.biochi.2010.02.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 02/18/2010] [Indexed: 12/20/2022]
|
18
|
Lin HS, Yue BD, Ho PC. Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr 2009; 23:1308-1315. [DOI: 10.1002/bmc.1254] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
The resveratrol analogue 4,4'-dihydroxy-trans-stilbene inhibits cell proliferation with higher efficiency but different mechanism from resveratrol. Int J Biochem Cell Biol 2009; 41:2493-502. [PMID: 19679195 DOI: 10.1016/j.biocel.2009.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/15/2009] [Accepted: 08/01/2009] [Indexed: 12/18/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine, which shows antiproliferative activity. We previously found that 4-hydroxy group in the trans conformation was absolutely required for the inhibition of cell proliferation. In the present work we have synthesized the resveratrol analogue 4,4'-dihydroxy-trans-stilbene, which contains two OH in 4' and 4 positions, with the aim of developing a compound with an antiproliferative potential higher than that of resveratrol, on the basis of the correlation between structure and activity previously observed. In comparison with resveratrol, 4,4'-dihydroxy-trans-stilbene inhibited cell clonogenic efficiency of fibroblasts nine times more although with a different mechanism. First, 4,4'-dihydroxy-trans-stilbene induced predominantly an accumulation of cells in G1 phase, whereas resveratrol perturbed the G1/S phase transition. Second, although both compounds were able to inhibit DNA polymerase (pol) delta in an in vitro assay, 4, 4'-dihydroxy-trans-stilbene did not affect pol alpha activity. Finally, 4,4'-dihydroxy-trans-stilbene increased p21(CDKN1A) and p53 protein levels, whereas resveratrol led to phosphorylation of the S-phase checkpoint protein Chk1. Taken together, our results demonstrated for the first time that the two hydroxyl groups on 4- and 4'- positions of the stilbenic backbone enhance the antiproliferative effect and introduce additional targets in the mechanism of action of resveratrol. In conclusion, 4,4'-dihydroxy-trans-stilbene has potent antiproliferative activities that differ from the effect of resveratrol shown in this system, suggesting that it warrants further development as a potential chemopreventive or therapeutic agent.
Collapse
|
20
|
Sengottuvelan M, Deeptha K, Nalini N. Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis. Chem Biol Interact 2009; 181:193-201. [PMID: 19523937 DOI: 10.1016/j.cbi.2009.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/31/2009] [Accepted: 06/03/2009] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is one of the most common internal malignancies in Western society. Currently oxidative stress has been increasingly postulated as a major contributor to carcinogenesis. The assessment of damage in various biological matrices, such as tissues and cells, is vital to understand the development of carcinogenesis and subsequently devising intervention strategies. Thus, the major objective of the present study was to examine the effect of resveratrol (Res) on DNA damage in a short-term study of 16 days and circulatory lipid peroxidation, enzymic/non-enzymic antioxidants status in a long-term study of 30 weeks in 1,2-dimethylhydrazine (DMH) induced colon carcinogenesis. Wistar male rats were divided into 6 groups, group 1 were control rats, group 2 rats received Res (8mg/kg body weight, orally, everyday), rats in groups 3-6 were administered (DMH, 20mg/kg body weight, s.c.) as four injections in order to induce DNA damage in the short-term or once a week for the first 15 weeks in the long-term study. In addition to DMH, group 4 (initiation), 5 (post-initiation) and 6 (entire-period) received Res (8mg/kg body weight, p.o., everyday). The results revealed that, supplementation with Res (entire-period) treatment regimen significantly reduced the DMH-induced leukocytic DNA damage (tail length, tail moment, % DNA in the comet tail and olive tail moment) as compared to DMH-alone treated rats. In addition, entire-period Res supplementation increased the enzymic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione S-transferase) and non-enzymic (reduced glutathione, vitamin C, vitamin E and beta-carotene) antioxidant status with a corresponding decrease in the extent of lipid peroxidation markers (thiobarbituric acid reactive substances, diene conjugates and lipid hydroperoxides). Conversely, Res supplementation during initiation and post-initiation regimen did not produce greater modulatory effects. Our results indicate that DMH-induced DNA damage and oxidative stress were suppressed/prevented effectively by chronic Res supplementation.
Collapse
Affiliation(s)
- M Sengottuvelan
- Department of Biochemistry and Biotechnology, Annamalai University, Tamilnadu, India
| | | | | |
Collapse
|