1
|
Kang Y, Liu Y, Fu P, Ma L. Peritoneal fibrosis: from pathophysiological mechanism to medicine. Front Physiol 2024; 15:1438952. [PMID: 39301425 PMCID: PMC11411570 DOI: 10.3389/fphys.2024.1438952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is currently one of the effective methods for treating end-stage renal disease (ESRD). However, long-term exposure to high concentration glucose in peritoneal dialysis environment could lead to peritoneal fibrosis (PF), impaired peritoneal filtration function, decreased peritoneal dialysis efficiency, and even withdrawal from peritoneal dialysis in patients. Considerable evidence suggests that peritoneal fibrosis after peritoneal dialysis is related to crucial factors such as mesothelial-to-mesenchymal transition (MMT), inflammatory response, and angiogenesis, etc. In our review, we summarize the pathophysiological mechanisms and further illustrate the future strategies against PF.
Collapse
Affiliation(s)
- Yingxi Kang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
3
|
Cui K, Bian X. The microRNA cluster miR-30b/-30d prevents tumor cell switch from an epithelial to a mesenchymal-like phenotype in GBC. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:716-725. [PMID: 33738326 PMCID: PMC7937539 DOI: 10.1016/j.omtm.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
As a malignancy of the gastrointestinal tract, gallbladder cancer (GBC) continues to exhibit notable rates of mortality. The current study aimed at investigating the effects associated with miR-30b and miR-30d (miR-30b/-30d) patterns in tumor cells undergoing epithelial-to-mesenchymal transition (EMT) in GBC. It identified that miR-30b and miR-30d, composed as a miRNA cluster, exhibited lower levels in the cancerous tissues from 50 patients with GBC relative to the gallbladder tissues from 35 patients with chronic cholecystitis. As expected, elevated expression of miR-30b/-30d was found to inhibit the EMT process, as evidenced by enhanced E-cadherin and reduced N-cadherin and vimentin in human GBC cells treated with miR-30b mimic, miR-30d mimic, and miR-30b/-30d mimic. Semaphorin-6B (SEMA6B) was identified as a target gene of miR-30b/-30d. Silencing of SEMA6B by its specific small interfering RNA (siRNA) mimicked the effect of miR-30b/-30d upregulation on the GBC cell EMT. Consistently, SEMA6B overexpression promoted this phenotypic switch even in the presence of miR-30b/-30d mimic. The tumorigenicity assay data obtained from nude mice also further supported the notion that miR-30b/-30d inhibited EMT of GBC cells. Thus, based on the key findings of the current study, we concluded that the miR-30b/-30d cluster may provide a potential avenue for targeting mesenchymal-like, invasive tumor cells in GBC.
Collapse
Affiliation(s)
- Kang Cui
- Clinical Laboratory, Linyi People's Hospital, Linyi 276003, P.R. China
| | - Xinyan Bian
- Anorectal Branch, Linyi People's Hospital, Linyi 276003, P.R. China
| |
Collapse
|
4
|
Jandova J, Wondrak GT. Genomic GLO1 deletion modulates TXNIP expression, glucose metabolism, and redox homeostasis while accelerating human A375 malignant melanoma tumor growth. Redox Biol 2021; 39:101838. [PMID: 33360689 PMCID: PMC7772567 DOI: 10.1016/j.redox.2020.101838] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Glyoxalase 1 (encoded by GLO1) is a glutathione-dependent enzyme detoxifying the glycolytic byproduct methylglyoxal (MG), an oncometabolite involved in metabolic reprogramming. Recently, we have demonstrated that GLO1 is overexpressed in human malignant melanoma cells and patient tumors and substantiated a novel role of GLO1 as a molecular determinant of invasion and metastasis in melanoma. Here, employing NanoString™ gene expression profiling (nCounter™ 'PanCancer Progression Panel'), we report that CRISPR/Cas 9-based GLO1 deletion from human A375 malignant melanoma cells alters glucose metabolism and redox homeostasis, observable together with acceleration of tumorigenesis. Nanostring™ analysis identified TXNIP (encoding thioredoxin-interacting protein), a master regulator of cellular energy metabolism and redox homeostasis, displaying the most pronounced expression change in response to GLO1 elimination, confirmed by RT-qPCR and immunoblot analysis. TXNIP was also upregulated in CRISPR/Cas9-engineered DU145 prostate carcinoma cells lacking GLO1, and treatment with MG or a pharmacological GLO1 inhibitor (TLSC702) mimicked GLO1_KO status, suggesting that GLO1 controls TXNIP expression through regulation of MG. GLO1_KO status was characterized by (i) altered oxidative stress response gene expression, (ii) attenuation of glucose uptake and metabolism with downregulation of gene expression (GLUT1, GFAT1, GFAT2, LDHA) and depletion of related key metabolites (glucose-6-phosphate, UDP-N-acetylglucosamine), and (iii) immune checkpoint modulation (PDL1). While confirming our earlier finding that GLO1 deletion limits invasion and metastasis with modulation of EMT-related genes (e.g. TGFBI, MMP9, ANGPTL4, TLR4, SERPINF1), we observed that GLO1_KO melanoma cells displayed a shortened population doubling time, cell cycle alteration with increased M-phase population, and enhanced anchorage-independent growth, a phenotype supported by expression analysis (CXCL8, CD24, IL1A, CDKN1A). Concordantly, an accelerated growth rate of GLO1_KO tumors, accompanied by TXNIP overexpression and metabolic reprogramming, was observable in a SCID mouse melanoma xenograft model, demonstrating that A375 melanoma tumor growth and metastasis can be dysregulated in opposing ways as a consequence of GLO1 elimination.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, Xin Y. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med 2021; 21:44. [PMID: 33273973 PMCID: PMC7706387 DOI: 10.3892/etm.2020.9475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xuefeng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Mengzhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Baokai Sun
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
6
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
7
|
Guo Y, Wang L, Gou R, Tang L, Liu P. Noncoding RNAs in peritoneal fibrosis: Background, Mechanism, and Therapeutic Approach. Biomed Pharmacother 2020; 129:110385. [PMID: 32768932 DOI: 10.1016/j.biopha.2020.110385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Peritoneal fibrosis (PF) is the main reason for patients to withdraw from peritoneal dialysis, while the mechanism underlying PF remains unclear. Increasing evidence has demonstrated the regulatory roles of different classes of noncoding RNAs (ncRNAs) in PF. MicroRNAs (miRNAs), which belong to a distinct class of ncRNAs, play crucial roles in the post-transcriptional regulation of gene expression. Studies have suggested that miRNAs play important roles in the pathogenesis of PF and have the potential to be used as diagnostic markers and therapeutic targets for PF in the future. Long noncoding RNAs (lncRNAs) have raised much attention in the recent years, which are involved in the pathophysiological processes of many diseases, including tumors, heart diseases and so on. Recently, some researchers have begun to notice the roles of lncRNAs in PF, and found that lncRNAs play certain roles in the pathogenesis of PF. Circular RNAs (circRNAs) have been proven to be participated in the pathogenesis of many diseases, including tumor metastasis, organ fibrosis and so on. However, studies on the correlation of circRNAs and PF are rather poor compared with miRNAs and lncRNAs. In this review, we will focus on the findings of ncRNAs in peritoneal dialysis therapy and discuss the rising interests in ncRNAs as diagnostic and therapeutic targets of PF.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Liuwei Wang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Rong Gou
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lin Tang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Peipei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
8
|
Wei C, Meng L, Zhang Y. miR-450a-5p Eliminates MGO-Induced Insulin Resistance via Targeting CREB. Int J Stem Cells 2020; 13:46-54. [PMID: 32114742 PMCID: PMC7119216 DOI: 10.15283/ijsc19088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives miR-450a-5p was involved in fat formation, however, its role in insulin resistance remains unclear. This study investigated the effects of miR-450a-5p on endothelial cells, with the aim of finding a potential target for diabetes mellitus. Methods and Results Human umbilical vein endothelial cells (HUVECs) were treated with low-glucose, high-glucose, methylglyoxal (MGO), and insulin alone or in combination with MGO. The expression of miR-450a-5p in treated cells was measured by quantitative real-time polymerase chain reaction (qRT-PCR) assays. The cell activity, migration and fat formation were determined by MTT experiments, Transwell assay and oil red O staining. The expressions of eNOS/AKT pathway-related proteins in cells were assessed by Western blot (WB) analysis. Furthermore, the target gene of miR-450a-5p was analyzed by double-luciferase reporter analysis, and its effects on eNOS/AKT pathway were estimated. We found that the expression of miR-450a-5p was decreased obviously in endothelial cells treated with high-glucose and MGO. In vitro cell experiments showed that MGO could not only promote the activity of endothelial cells, but also accelerate cell migration and fat accumulation, which, however, could be reversed by up-regulation of miR-450a-5p. Moreover, MGO inhibited eNOS/AKT pathway activation and NO release mediated by insulin, and such effects were reversed by up-regulation of miR-450a-5p. Furthermore, CREB was the target gene for miR-450a-5p, had an activation effect on the eNOS/AKT pathway. Conclusions Up-regulated miR-450a-5p eliminates MGO-induced insulin resistance via targeting CREB, and therefore could be used as a potential target to improve insulin resistance and treat patients with diabetes-related diseases.
Collapse
Affiliation(s)
- Cuifeng Wei
- Department of Endocrinology, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Li Meng
- Department of Endocrinology, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Yuting Zhang
- Department of Endocrinology, Jingmen No. 1 People's Hospital, Jingmen, China
| |
Collapse
|
9
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
10
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
11
|
Wu J, Huang Q, Li P, Wang Y, Zheng C, Lei X, Li S, Gong W, Yin B, Luo C, Xiao J, Zhou W, Xu Z, Chen Y, Peng F, Long H. MicroRNA-145 promotes the epithelial-mesenchymal transition in peritoneal dialysis-associated fibrosis by suppressing fibroblast growth factor 10. J Biol Chem 2019; 294:15052-15067. [PMID: 31431501 PMCID: PMC6791318 DOI: 10.1074/jbc.ra119.007404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Peritoneal fibrosis is a common complication of long-term peritoneal dialysis (PD) and the principal cause of ultrafiltration failure during PD. The initial and reversible step in PD-associated peritoneal fibrosis is the epithelial-mesenchymal transition (EMT). Although the mechanisms in the EMT have been the focus of many studies, only limited information is currently available concerning microRNA (miRNA) regulation in peritoneal fibrosis. In this study, we aimed to characterize the roles of microRNA-145 (miR-145) and fibroblast growth factor 10 (FGF10) in peritoneal fibrosis. After inducing EMT with transforming growth factor-β1 (TGF-β1) in vitro, we found that miR-145 is significantly up-regulated, whereas FGF10 is markedly down-regulated, suggesting a close link between miR-145 and FGF10 in peritoneal fibrosis, further confirmed in luciferase reporter experiments. Furthermore, in human peritoneal mesothelial cells (i.e. HMrSV5 cells), miR-145 mimics induced EMT, whereas miR-145 inhibition suppressed EMT, and we also observed that miR-145 suppressed FGF10 expression. In vivo, we found that the exogenous delivery of an miR-145 expression plasmid both blocked FGF10 and intensified the EMT, whereas miR-145 inhibition promoted the expression of FGF10 and reversed the EMT. In conclusion, miR-145 promotes the EMT during the development of peritoneal fibrosis by suppressing FGF10 activity, suggesting that miR-145 represents a potential therapeutic target for managing peritoneal fibrosis.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Peilin Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chenghao Zheng
- Second Clinical Medical School, Southern Medical University, Guangzhou 510280, China
| | - Xianghong Lei
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bohui Yin
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weidong Zhou
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhaozhong Xu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
12
|
Li X, Liu H, Sun L, Zhou X, Yuan X, Chen Y, Liu F, Liu Y, Xiao L. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. J Cell Mol Med 2019; 23:2372-2383. [PMID: 30693641 PMCID: PMC6433681 DOI: 10.1111/jcmm.14029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinke Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yusa Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett 2018; 23:45. [PMID: 30250489 PMCID: PMC6145373 DOI: 10.1186/s11658-018-0111-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Recent developments in high-throughput genotyping technologies have revealed the existence of several new classes of RNA that do not encode proteins but serve other cellular roles. To date, these non-coding RNAs (ncRNAs) have been shown to modulate both gene expression and genome remodeling, thus contributing to the control of both normal and disease-related cellular processes. The attraction of this research topic can be seen in the increasing number of submissions on ncRNAs to molecular biology journals, including Cellular Molecular Biology Letters (CMBL). As researchers attempt to deepen the understanding of the role of ncRNAs in cell biology, it is worth discussing the broader importance of this research.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- 1Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F Sikorski
- 2Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal. Int J Mol Sci 2018; 19:ijms19020522. [PMID: 29425121 PMCID: PMC5855744 DOI: 10.3390/ijms19020522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Evidence has been provided linking microRNAs (miRNAs) and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO) accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.
Collapse
|
15
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
16
|
Yang L, Fan Y, Zhang X, Ma J. miRNA-23 regulates high glucose induced epithelial to mesenchymal transition in human mesotheial peritoneal cells by targeting VDR. Exp Cell Res 2017; 360:375-383. [DOI: 10.1016/j.yexcr.2017.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
17
|
Li H, Liu J, Wang Y, Fu Z, Hüttemann M, Monks TJ, Chen AF, Wang JM. MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in Type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E391-E401. [PMID: 28698281 PMCID: PMC5668595 DOI: 10.1152/ajpendo.00073.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022]
Abstract
Bone marrow-derived progenitor cells (BMPCs) are potential candidates for autologous cell therapy in tissue repair and regeneration because of their high angiogenic potential. However, increased progenitor cell apoptosis in diabetes directly limits their success in the clinic. MicroRNAs are endogenous noncoding RNAs that regulate gene expression at the posttranscriptional level, but their roles in BMPC-mediated angiogenesis are incompletely understood. In the present study, we tested the hypothesis that the proangiogenic miR-27b inhibits BMPC apoptosis in Type 2 diabetes. Bone marrow-derived EPCs from adult male Type 2 diabetic db/db mice and their normal littermates db/+ mice were used. MiR-27b expression (real-time PCR) in EPCs was decreased after 24 h of exposure to methylglyoxal (MGO) or oxidized low-density lipoprotein but not high glucose, advanced glycation end products, the reactive oxygen species generator LY83583, or H2O2 The increase in BMPC apoptosis in the diabetic mice was rescued following transfection with a miR-27b mimic, and the increased apoptosis induced by MGO was also rescued by the miR-27b mimic. p53 protein expression and the Bax/Bcl-2 ratio in EPCs (Western blot analyses) were significantly higher in db/db mice, both of which were suppressed by miR-27b. Furthermore, mitochondrial respiration, as measured by oxygen consumption rate, was enhanced by miR-27b in diabetic BMPCs, with concomitant decrease of mitochondrial Bax/Bcl-2 ratio. The 3' UTR binding assays revealed that both Bax, and its activator RUNX1, were direct targets of miR-27b, suggesting that miR-27b inhibits Bax expression in both direct and indirect manners. miR-27b prevents EPC apoptosis in Type 2 diabetic mice, at least in part, by suppressing p53 and the Bax/Bcl-2 ratio. These findings may provide a mechanistic basis for rescuing BMPC dysfunction in diabetes for successful autologous cell therapy.
Collapse
Affiliation(s)
- Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jenny Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yihan Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
- Departments of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrated Biosciences, Wayne State University, Detroit, Michigan
| | - Alex F Chen
- Clinical Research Institute, Department of Cardiology and Endocrinology, The Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Vascular Surgery Research, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan;
| |
Collapse
|
18
|
Reactive carbonyl compounds impair wound healing by vimentin collapse and loss of the primary cilium. Food Chem Toxicol 2017; 108:128-138. [DOI: 10.1016/j.fct.2017.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/16/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
|
19
|
Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci 2017; 18:ijms18010188. [PMID: 28106778 PMCID: PMC5297820 DOI: 10.3390/ijms18010188] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
The highly reactive dicarbonyl methylglyoxal (MGO) is mainly formed as byproduct of glycolysis. Therefore, high blood glucose levels determine increased MGO accumulation. Nonetheless, MGO levels are also increased as consequence of the ineffective action of its main detoxification pathway, the glyoxalase system, of which glyoxalase 1 (Glo1) is the rate-limiting enzyme. Indeed, a physiological decrease of Glo1 transcription and activity occurs not only in chronic hyperglycaemia but also with ageing, during which MGO accumulation occurs. MGO and its advanced glycated end products (AGEs) are associated with age-related diseases including diabetes, vascular dysfunction and neurodegeneration. Endothelial dysfunction is the first step in the initiation, progression and clinical outcome of vascular complications, such as retinopathy, nephropathy, impaired wound healing and macroangiopathy. Because of these considerations, studies have been centered on understanding the molecular basis of endothelial dysfunction in diabetes, unveiling a central role of MGO-Glo1 imbalance in the onset of vascular complications. This review focuses on the current understanding of MGO accumulation and Glo1 activity in diabetes, and their contribution on the impairment of endothelial function leading to diabetes-associated vascular damage.
Collapse
|
20
|
Mirra P, Nigro C, Prevenzano I, Procopio T, Leone A, Raciti GA, Andreozzi F, Longo M, Fiory F, Beguinot F, Miele C. The role of miR-190a in methylglyoxal-induced insulin resistance in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2016; 1863:440-449. [PMID: 27864140 DOI: 10.1016/j.bbadis.2016.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl produced as by-product of glycolysis, and its formation is heightened in hyperglycaemia. MGO plasma levels are two-fold to five-fold increased in diabetics and its accumulation promotes the progression of vascular complications. Impairment of endothelium-derived nitric oxide represents a common feature of endothelial dysfunction in diabetics. We previously demonstrated that MGO induces endothelial insulin resistance. Increasing evidence shows that high glucose and MGO modify vascular expression of several microRNAs (miRNAs), suggesting their potential role in the impairment of endothelial insulin sensitivity. The aim of the study is to investigate whether miRNAs may be involved in MGO-induced endothelial insulin resistance in endothelial cells. MGO reduces the expression of miR-190a both in mouse aortic endothelial cells (MAECs) and in aortae from mice knocked-down for glyoxalase-1. miR-190a inhibition impairs insulin sensitivity, whereas its overexpression prevents the MGO-induced insulin resistance in MAECs. miR-190a levels are not affected by the inhibition of ERK1/2 phosphorylation. Conversely, ERK1/2 activation is sustained by miR-190a inhibitor and the MGO-induced ERK1/2 hyper-activation is reduced by miR-190a mimic transfection. Similarly, protein levels of the upstream KRAS are increased by both MGO and miR-190a inhibitor, and these levels are reduced by miR-190a mimic transfection. Interestingly, silencing of KRAS is able to rescue the MGO-impaired activation of IRS1/Akt/eNOS pathway in response to insulin. In conclusion, miR-190a down-regulation plays a role in MGO-induced endothelial insulin resistance by increasing KRAS. This study highlights miR-190a as new candidate for the identification of strategies aiming at ameliorating vascular function in diabetes.
Collapse
Affiliation(s)
- Paola Mirra
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Immacolata Prevenzano
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Teresa Procopio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alessia Leone
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gregory Alexander Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna-Graecia, Catanzaro, Italy
| | - Michele Longo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesca Fiory
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Claudia Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
21
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
22
|
Morishita Y, Yoshizawa H, Watanabe M, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Muto S, Nagata D. MicroRNA expression profiling in peritoneal fibrosis. Transl Res 2016; 169:47-66. [PMID: 26616819 DOI: 10.1016/j.trsl.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Peritoneal fibrosis (PF) is an intractable complication leading to peritoneal membrane failure in peritoneal dialysis (PD). The aim of this study was to identify microRNAs (miRNAs) involved in PF. Peritoneal tissue from a PF rat model was screened for miRNA expression using microarray analysis. The expression levels of differentially expressed miRNAs were evaluated in serum and drained dialysate and associated with peritoneal membrane functions, as measured by the peritoneal equilibrium test in 33 PD patients. Furthermore, an miRNA inhibitor (anti-miRNA-21-5p locked nucleic acid (LNA): anti-miRNA-21-LNA) was intraperitoneally injected to PF model mice to investigate its effects on PF. The initial profiling study of PF rat peritoneal tissue identified 6 miRNAs (miRNA-142-3p, miRNA-21-5p, miRNA-221-3p, miRNA-223-3p, miRNA-34a-5p, and miRNA-327) whose expression was increased more than 2-fold and no miRNAs whose expression was decreased more than half. Among them, serum levels of miRNA-21-5p, miRNA-221-3p, and miRNA-327 and drained dialysate levels of miRNA-221-3p and miRNA-34a-5p were significantly correlated with peritoneal membrane functions in PD patients. Anti-miRNA-21-LNA significantly inhibited miRNA-21-5p expression in the PF mouse peritoneum, inhibited peritoneal fibrous thickening, and maintained peritoneal membrane functions. These results suggest that several miRNAs are involved in PF and that they may be useful as novel diagnostic biomarkers and therapeutic targets for PF.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan.
| | - Hiromichi Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Minami Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Reika Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Toshimi Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Ichiro Hirahara
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Susumu Ookawara
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| |
Collapse
|
23
|
Effluent Tenascin-C Levels Reflect Peritoneal Deterioration in Peritoneal Dialysis: MAJOR IN PD Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:241098. [PMID: 26770971 PMCID: PMC4684852 DOI: 10.1155/2015/241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/04/2015] [Accepted: 10/29/2015] [Indexed: 01/03/2023]
Abstract
Peritoneal deterioration causing structural changes and functional decline is a major complication of peritoneal dialysis (PD). The aim of this study was to explore effluent biomarkers reflecting peritoneal deterioration. In an animal study, rats were intraperitoneally administered with PD fluids adding 20 mM methylglyoxal (MGO) or 20 mM formaldehyde (FA) every day for 21 days. In the MGO-treated rats, tenascin-C (TN-C) levels in the peritoneal effluents were remarkably high and a cluster of TN-C-positive mesothelial cells with epithelial-to-mesenchymal transition- (EMT-) like change excessively proliferated at the peritoneal surface, but not in the FA-treated rats. Effluent matrix metalloproteinase-2 (MMP-2) levels increased in both the MGO- and FA-treated rats. In a clinical study at 18 centers between 2006 and 2013, effluent TN-C and MMP-2 levels were quantified in 182 PD patients with end-stage renal disease. Peritoneal function was estimated using the peritoneal equilibration test (PET). From the PET results, the D/P Cr ratio was correlated with effluent levels of TN-C (ρ = 0.57, p < 0.001) and MMP-2 (ρ = 0.73, p < 0.001). We suggest that TN-C in the effluents may be a diagnostic marker for peritoneal deterioration with EMT-like change in mesothelial cells in PD.
Collapse
|
24
|
microRNA regulation of peritoneal cavity homeostasis in peritoneal dialysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:929806. [PMID: 26495316 PMCID: PMC4606405 DOI: 10.1155/2015/929806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022]
Abstract
Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD) treatment. Several microRNAs (miRNAs) have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE-) derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.
Collapse
|
25
|
Mutsaers SE, Birnie K, Lansley S, Herrick SE, Lim CB, Prêle CM. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol 2015; 6:113. [PMID: 26106328 PMCID: PMC4460327 DOI: 10.3389/fphar.2015.00113] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Kimberly Birnie
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sally Lansley
- Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Sarah E Herrick
- Institute of Inflammation and Repair, Faculty of Medical and Human Sciences and Manchester Academic Health Science Centre, University of Manchester , Manchester, UK
| | - Chuan-Bian Lim
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| | - Cecilia M Prêle
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research , Nedlands, WA, Australia ; Institute for Respiratory Health, Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA, Australia
| |
Collapse
|
26
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|