1
|
Chelatrematidae n. fam., a new family of digenetic trematodes from the South Western Ghats, India, erected on the basis of morphological and molecular studies. J Helminthol 2022; 96:e47. [PMID: 35833304 DOI: 10.1017/s0022149x22000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of the morphological characterization of Chelatrema neilgherriensis Manjula & Janardanan, 2006 recovered from the freshwater fish Barilius gatensis (Valenciennes, 1844) in the Wayanad region of the Western Ghats, the diagnostic features of the genus Chelatrema Gupta & Kumari, 1973 have been modified. Based on the phylogenetic analysis of C. neilgherriensis and comparative morphology studies relative to members of other families of Gorgoderoidea Looss, 1901, this genus is placed in a new family Chelatrematidae n. fam. The studies revealed the molecular and morphological closeness of Chelatrema with Paracreptatrematina limi Amin & Myer, 1982, and the latter is transferred to this new family. Hence the new family Chelatrematidae n. fam. comprises the genera Chelatrema and Paracreptatrematina.
Collapse
|
2
|
Achatz TJ, Cleveland DW, Carrión Bonilla C, Cronin L, Tkach VV. New dicrocoeliid digeneans from mammals in Ecuador including a highly genetically divergent new genus from an ancient marsupial lineage. Parasitol Int 2020; 78:102138. [PMID: 32428659 DOI: 10.1016/j.parint.2020.102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The Dicrocoeliidae is a highly diverse and broadly distributed family of digeneans typically parasitic in the gall bladder and liver of their tetrapod hosts. So far, no study has reported dicrocoeliids, or any digeneans, from the ancient marsupial family Caenolestidae. Herein, we describe a new genus of dicrocoeliids (Otongatrema n. gen.) from Tate's shrew opossum Caenolestes fuliginosus and a new species of Metadelphis (Metadelphis cesartapiai n. sp.) from a phyllostomid bat Anoura peruana collected in Ecuador. Otongatrema can be readily distinguished from the morphologically closest dicrocoeliid genera Concinnum, Conspicuum and Canaania based on the position of the genital pore, distribution/position of the uterus and extent of vitellarium. Metadelphis cesartapiai can be easily differentiated from other Metadelphis spp. based on a combination of morphological characters including body shape and size, distribution of vitellarium, shape of the gonads as well as size of suckers and cirrus sac. In addition, we used newly generated partial sequences of the nuclear 28S rRNA gene and mitochondrial cox1 genes to examine phylogenetic affinities of the new taxa within the Dicrocoeliidae. Both the 28S and cox1 phylogenies confidently positioned Otongatrema as a sister/basal group to all other dicrocoeliids sequenced so far. The phylogenetic position of Otongatrema may be explained by a close co-evolutionary relationship with Caenolestidae, one of the most basal and most ancient groups of marsupials. In addition, our 28S phylogeny provides evidence that the complete or partial loss of intestinal structures has likely occurred independently at least 3 times in the evolutionary history of the Dicrocoeliidae.
Collapse
Affiliation(s)
- Tyler J Achatz
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202-9019, USA.
| | - Dawn W Cleveland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202-9019, USA.
| | - Carlos Carrión Bonilla
- Zoological Museum, School of Biological Sciences, Universidad Católica del Ecuador, Quito, Ecuador.
| | - Lawrence Cronin
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202-9019, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202-9019, USA.
| |
Collapse
|
3
|
Suleman, Khan MS, Tkach VV, Muhammad N, Zhang D, Zhu XQ, Ma J. Molecular phylogenetics and mitogenomics of three avian dicrocoeliids (Digenea: Dicrocoeliidae) and comparison with mammalian dicrocoeliids. Parasit Vectors 2020; 13:74. [PMID: 32054541 PMCID: PMC7020495 DOI: 10.1186/s13071-020-3940-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background The Dicrocoeliidae are digenetic trematodes mostly parasitic in the bile ducts and gall bladder of various avian and mammalian hosts. Until recently their systematics was based on morphological data only. Due to the high morphological uniformity across multiple dicrocoeliid taxa and insufficient knowledge of relative systematic value of traditionally used morphological characters, their taxonomy has always been unstable. Therefore, DNA sequence data provide a critical independent source of characters for phylogenetic inference and improvement of the system. Methods We examined the phylogenetic affinities of three avian dicrocoeliids representing the genera Brachylecithum, Brachydistomum and Lyperosomum, using partial sequences of the nuclear large ribosomal subunit (28S) RNA gene. We also sequenced the complete or nearly complete mitogenomes of these three isolates and conducted a comparative mitogenomic analysis with the previously available mitogenomes from three mammalian dicrocoeliids (from 2 different genera) and examined the phylogenetic position of the family Dicrocoeliidae within the order Plagiorchiida based on concatenated nucleotide sequences of all mitochondrial genes (except trnG and trnE). Results Combined nucleotide diversity, Kimura-2-parameter distance, non-synonymous/synonymous substitutions ratio and average sequence identity analyses consistently demonstrated that cox1, cytb, nad1 and two rRNAs were the most conserved and atp6, nad5, nad3 and nad2 were the most variable genes across dicrocoeliid mitogenomes. Phylogenetic analyses based on mtDNA sequences did not support the close relatedness of the Paragonimidae and Dicrocoeliidae and suggested non-monophyly of the Gorgoderoidea as currently recognized. Conclusions Our results show that fast-evolving mitochondrial genes atp6, nad5 and nad3 would be better markers than slow-evolving genes cox1 and nad1 for species discrimination and population level studies in the Dicrocoeliidae. Furthermore, the Dicrocoeliidae being outside of the clade containing other xiphidiatan trematodes suggests a need for the re-evaluation of the taxonomic content of the Xiphidiata.
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, 23340, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Hildebrand J, Pyrka E, Sitko J, Jeżewski W, Zaleśny G, Tkach VV, Laskowski Z. Molecular phylogeny provides new insights on the taxonomy and composition of Lyperosomum Looss, 1899 (Digenea, Dicrocoeliidae) and related genera. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:90-99. [PMID: 31011531 PMCID: PMC6463552 DOI: 10.1016/j.ijppaw.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/01/2022]
Abstract
Lyperosomum Looss, 1899 is one of the largest genera of the Dicrocoeliidae and is one of the best examples of the systematic complexity and taxonomic instability within this family. We present the molecular analyses based on novel sequences of nuclear and mitochondrial genes obtained from 56 isolates of adult flukes and larval stages of dicrocoeliids belonging to Lyperosomum, Skrjabinus, Zonorchis as well as previously available sequence data. According to obtained results we propose to return Zonorchis clathratus and Z. petiolatus into Lyperosomum, and to recognize L. alagesi as a synonym of L. petiolatum. Our study shows that L. petiolatum commonly occurs in Europe in corvids as well as in several species of migratory songbirds, e.g. Sylvia atricapilla. At the same time, the Turdidae appear to host a distinct species of Lyperosomum. The phylogenetic analysis has clearly demonstrated the paraphylepic nature of Lyperosomum and indicated the need of its thorough revision preferably using specimens from type hosts and type territories of nominal species. In addition, inclusion of numerous not yet sequenced dicrocoeliid genera into future phylogenetic studies is necessary to clarify the interrelationships of taxa within the family and stabilize its system.
Collapse
Affiliation(s)
- Joanna Hildebrand
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Ewa Pyrka
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Jiljí Sitko
- Comenius Museum, Horní námĕsti 7, 750 11, Přerov, Czech Republic
| | - Witold Jeżewski
- Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warszawa, Poland
| | - Grzegorz Zaleśny
- Department of Systematic and Ecology of Invertebrates, Institute of Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Zdzisław Laskowski
- Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warszawa, Poland
| |
Collapse
|