1
|
Liang H, Zhu M, Ye H, Zeng C, Wang S, Niu Y. Carbon fiber microelectrode array loaded with the diazonium salt-single-walled carbon nanotubes composites for the simultaneous monitoring of dopamine and serotonin in vivo. Anal Chim Acta 2021; 1186:339086. [PMID: 34756249 DOI: 10.1016/j.aca.2021.339086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Carbon fiber microelectrode arrays based on diazonium salt and single-walled carbon nanotubes composites (DS-SWCNT/CFMEA) have been fabricated, and it developed for the simultaneous monitoring of dopamine (DA) and serotonin (5-HT) with differential pulse voltammary (DPV). The diazonium salt can improve the water-solubility of single-walled carbon nanotubes and show good selectivity to DA, thus DS-SWCNT/CFMEA exhibits enhanced electrocatalytic activity for the oxidation of DA and 5-HT, and well antifouling ability to the other biomolecules. Moreover, DS-SWCNT/CFMEA shows the wider liner range, and the good performance of precision, reproducibility and biocompatibility. The excellent characteristics of the prepared microsensor array make it to be used to monitor the release of DA and 5-HT in the mouse brain striatum of different group over time. Meanwhile, the results of in vivo on line assay further confirmed the pharmacological effects of Uncaria alkaloid extract solution on DA and 5-HT. This research may provide a new method for monitoring the release of neurobiomolecules, and the microsensor array are expected to be a tool for the study of pharmacological and physiological processes on line in vivo.
Collapse
Affiliation(s)
- Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Changqing Zeng
- College of Chinese Traditional Medicines, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Yanan Niu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Diazonium Modification of Inorganic and Organic Fillers for the Design of Robust Composites: A Review. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01725-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AbstractThis review focuses on fillers modified with diazonium salts and their use in composites. We reviewed scientific publications and presented information about such diazonium-modified fillers as boron nitride, carbon fillers, cellulose, clay, silica, titanium dioxide, and zeolite. The fillers were divided into two groups. The first group includes those that form covalent bonds with the polymer, while the second includes those that do not form them. This review indicates a tremendous impact of filler modification using diazonium salts on the properties of composites. The review presents examples of the impact of filler on such properties as thermal conductivity, thermal stability, and mechanical properties (e.g., interfacial shear strength, compressive strength, flexural strength). The presented review indicates the enormous potential of composites with diazonium-modified fillers in control drug release, antistatic coatings, electrode materials, photocatalysts, bone tissue engineering scaffolds, fuel cell applications, abrasive tools, and electromechanical strain sensor. We hope that this review will help both research groups and industry in choosing fillers for given types of polymers and obtaining composites with even better properties.
Collapse
|
3
|
Polyaniline-Grafted RuO2-TiO2 Heterostructure for the Catalysed Degradation of Methyl Orange in Darkness. Catalysts 2019. [DOI: 10.3390/catal9070578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Massive industrial and agricultural developments have led to adverse effects of environmental pollution resisting conventional treatment processes. The issue can be addressed via heterogeneous photocatalysis as witnessed recently. Herein, we have developed novel metal/semi-conductor/polymer nanocomposite for the catalyzed degradation and mineralization of model organic dye pollutants in darkness. RuO2-TiO2 mixed oxide nanoparticles (NPs) were modified with diphenyl amino (DPA) groups from the 4-diphenylamine diazonium salt precursor. The latter was reduced with ascorbic acid to provide radicals that modified the NPs and further served for in situ synthesis of polyaniline (PANI) that resulted in RuO2/TiO2-DPA-PANI nanocomposite catalyst. Excellent adhesion of PANI to RuO2/TiO2-DPA was noted but not in the case of the bare mixed oxide. This stresses the central role of diazonium compounds to tether PANI to the underlying mixed oxide. RuO2-TiO2/DPA/PANI nanocomposite revealed superior catalytic properties in the degradation of Methyl Orange (MO) compared to RuO2-TiO2/PANI and RuO2-TiO2. Interestingly, it is active even in the darkness due to high PANI mass loading. In addition, PANI constitutes a protective layer of RuO2-TiO2 NPs that permitted us to reuse the RuO2-TiO2/DPA/PANI nanocomposite nine times, whereas RuO2-TiO2/PANI and RuO2-TiO2 were reused seven and five times only, respectively. The electronic displacements at the interface of the heterojunction metal/semi-conductor under visible light and the synergistic effects between PANI and RuO2 result in the separation of electron-hole pairs and a reduction of its recombination rate as well as a significant catalytic activity of RuO2-TiO2/DPA/PANI under simulated sunlight and in the dark, respectively.
Collapse
|
4
|
Hamouma O, Oukil D, Omastová M, Chehimi MM. Flexible paper@carbon nanotube@polypyrrole composites: The combined pivotal roles of diazonium chemistry and sonochemical polymerization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Fioresi F, Vieillard J, Bargougui R, Bouazizi N, Fotsing PN, Woumfo ED, Brun N, Mofaddel N, Le Derf F. Chemical modification of the cocoa shell surface using diazonium salts. J Colloid Interface Sci 2017; 494:92-97. [DOI: 10.1016/j.jcis.2017.01.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
6
|
Msaadi R, Ammar S, Chehimi MM, Yagci Y. Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead (II) ions in aqueous media. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Cao C, Zhang Y, Jiang C, Qi M, Liu G. Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5031-5049. [PMID: 28124552 DOI: 10.1021/acsami.6b16108] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.
Collapse
Affiliation(s)
- Chaomin Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Yin Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford , Oxford OX1 2JD, United Kingdom
| | - Meng Qi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guozhen Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University , North Ryde 2109, Australia
| |
Collapse
|
8
|
Rodd A, Creighton MA, Vaslet CA, Rangel-Mendez JR, Hurt RH, Kane AB. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6419-27. [PMID: 24823274 PMCID: PMC4046867 DOI: 10.1021/es500892m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 05/22/2023]
Abstract
Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50-1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25-50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25-75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms.
Collapse
Affiliation(s)
- April
L. Rodd
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| | - Megan A. Creighton
- School
of Engineering and Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Charles A. Vaslet
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| | - J. Rene Rangel-Mendez
- Division
of Environmental Sciences, Instituto Potosino
de Investigación Científica y Tecnológica, San Luis Potosí 78216, San Luis Potosí, Mexico
| | - Robert H. Hurt
- School
of Engineering and Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Agnes B. Kane
- Department
of Pathology and Laboratory Medicine, Brown
University, Providence, Rhode Island 02912, United States
| |
Collapse
|
9
|
Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM. Polymer-immobilized nanoparticles. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.04.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mammeri F, Ballarin A, Giraud M, Brusatin G, Ammar S. Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Chams A, Dupeyre G, Jouini M, Yassar A, Perruchot C. Direct growth of polymer brushes from an electrodeposited conducting poly(dithienylpyrrole) layer functionalized with ATRP initiating moieties. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Mooste M, Kibena E, Sarapuu A, Matisen L, Tammeveski K. Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Khlifi A, Gam-Derouich S, Jouini M, Kalfat R, Chehimi MM. Melamine-imprinted polymer grafts through surface photopolymerization initiated by aryl layers from diazonium salts. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Salmi Z, Benmehdi H, Lamouri A, Decorse P, Jouini M, Yagci Y, Chehimi MM. Preparation of MIP grafts for quercetin by tandem aryl diazonium surface chemistry and photopolymerization. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0993-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|