1
|
Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells 2022; 11:cells11030569. [PMID: 35159378 PMCID: PMC8834125 DOI: 10.3390/cells11030569] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops, feeding half of the world’s population. However, rice production is affected by cadmium (Cd) toxicity. Due to an increase in Cd-contaminated soil and rice grains, and the serious harm to human health from Cd, research on Cd uptake, transport and resistance in rice has been widely conducted, and many important advances have been made. Rice plants absorb Cd mainly from soil through roots, which is mediated by Cd absorption-related transporters, including OsNramp5, OsNramp1, OsCd1, OsZIP3, OsHIR1, OsIRT1 and OsIRT2. Cd uptake is affected by soil’s environmental factors, such as the concentrations of Cd and some other ions in soil, soil properties, and other factors can affect the bioavailability of Cd in soil. Then, Cd is transported within rice plants mediated by OsZIP6, OsZIP7, OsLCD, OsHMA2, CAL1, OsCCX2, OsLCT1 and OsMTP1, from roots to shoots and from shoots to grains. To resist Cd toxicity, rice has evolved many resistance strategies, including the deposition of Cd in cell walls, vacuolar Cd sequestration, Cd chelation, antioxidation and Cd efflux. In addition, some unresolved scientific questions surrounding Cd uptake, transport and resistance in rice are proposed for further study.
Collapse
|
2
|
Xiao Q, Wang Y, Lü Q, Wen H, Han B, Chen S, Zheng X, Lin R. Responses of glutathione and phytochelatins biosysthesis in a cadmium accumulator of Perilla frutescens (L.) Britt. under cadmium contaminated conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110805. [PMID: 32540618 DOI: 10.1016/j.ecoenv.2020.110805] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Screening new accumulators of heavy metal and identifying their tolerance, enrichment capacity of heavy metals are currently hot issues in phytoremediation research. A series of hydroponic experiments were conducted to analyze the effects of glutathione and phytochelatins in roots, stems, and leaves of Perilla frutescens under cadmium stress. The results showed that the non-protein thiols in roots and stems mainly existed in the form of GSH, PC2, PC3, and PC4 under Cd stress condition, while in leaves they existed in the form of GSH, PC2, and PC3. Furthermore, the contents of GSH and PCs positively correlated with Cd, but negatively correlated with root vigor and chlorophyll content under Cd stress conditions. After 21 days of treatments, the contents of Cd in different parts of the plant were 1465.2-3092.9 mg· kg-1 in the roots, 199.6-478.4 mg·kg-1 in the stems and 61.3-96.9 mg· kg-1 in the leaves at 2, 5, 10 mg·L-1 Cd levels respectively, and the amount of Cd uptakes were up to 3547.7-5701.7 μg·plant-1. Therefore, P. frutescens performed high capacity in Cd accumulation, and PCs played a key role in Cd tolerance. The application prospect of the plant in phytoremediation Cd polluted soil was also discussed.
Collapse
Affiliation(s)
- Qingtie Xiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixin Lü
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huanhuan Wen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bolun Han
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shen Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ruiyu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
T-DNA activation tagging in rice results in a variable response to Meloidogyne graminicola infection. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Pál M, Csávás G, Szalai G, Oláh T, Khalil R, Yordanova R, Gell G, Birinyi Z, Németh E, Janda T. Polyamines may influence phytochelatin synthesis during Cd stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:272-280. [PMID: 28715750 DOI: 10.1016/j.jhazmat.2017.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 05/12/2023]
Abstract
Although the metabolism of phytochelatins and higher polyamines are linked with each other, the direct relationship between them under heavy metal stress has not yet been clarified. Two approaches were used to reveal the influence of polyamine content on cadmium stress responses, particularly with regard to phytochelatin synthesis: putrescine pre-treatment of rice plants followed by cadmium stress, and treatment with the putrescine synthesis inhibitor, 2-(difluoromethyl)ornithine combined with cadmium treatment. The results indicated that putrescine pre-treatment enhanced the adverse effect of cadmium, while the application of 2-(difluoromethyl)ornithine reduced it to a certain extent. These differences were associated with increased polyamine content, more intensive polyamine metabolism, but decreased thiol and phytochelatin contents. The gene expression level and enzyme activity of phytochelatin synthase also decreased in rice treated with putrescine prior to cadmium stress, compared to cadmium treatment alone. In contrast, the inhibition of putrescine synthesis during cadmium treatment resulted in higher gene expression level of phytochelatin synthase. The results suggest that polyamines may have a substantial influence on phytochelatin synthesis at several levels under cadmium stress in rice.
Collapse
Affiliation(s)
- Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary.
| | - Gabriella Csávás
- Faculty of Horticultural Science, Szent István University, H-1118 Budapest, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| | - Tímea Oláh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| | - Radwan Khalil
- Botany Department, Faculty of Science, Benha University, Benha, Egypt
| | - Rusina Yordanova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, Bulgaria
| | - Gyöngyvér Gell
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| | - Zsófia Birinyi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| | - Edit Németh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462 Martonvásár, POB 19, Hungary
| |
Collapse
|
5
|
Xu XY, Ding ZJ, Chen L, Yan JY, Li GX, Zheng SJ. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:848-58. [PMID: 25559189 DOI: 10.1111/jipb.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/31/2014] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Ying Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Nareshkumar A, Veeranagamallaiah G, Pandurangaiah M, Kiranmai K, Amaranathareddy V, Lokesh U, Venkatesh B, Sudhakar C. Pb-Stress Induced Oxidative Stress Caused Alterations in Antioxidant Efficacy in Two Groundnut (<i>Arachis hypogaea</i> L.) Cultivars. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.610123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF. What is new in the research on cadmium‐induced stress in plants? Food Energy Secur 2012. [DOI: 10.1002/fes3.10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ricardo A. Azevedo
- Departamento de Genética Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo (USP) Piracicaba São Paulo Brazil
| | - Priscila L. Gratão
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| | - Carolina C. Monteiro
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| | - Rogério F. Carvalho
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| |
Collapse
|