1
|
Kumar G, Bhardwaj M. Gamma Rays Induced Cytomictic Variations in Pollen Mother Cells of Cumin (Cuminum cyminum) L. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Analysis of cytoskeleton in the cells involved in cytomixis: the migrated chromatin displays an MT-organizing activity and can interact with the spindle. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Kravets EA, Yemets AI, Blume YB. Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants. Cell Biol Int 2017; 43:999-1009. [DOI: 10.1002/cbin.10842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alla Ivanovna Yemets
- Institute of Food Biotechnology and GenomicsNatl. Academy of Sciences of UkraineKyiv Ukraine
| | | |
Collapse
|
4
|
Tütüncü Konyar S. Ultrastructural aspects of pollen ontogeny in an endangered plant species, Pancratium maritimum L. (Amaryllidaceae). PROTOPLASMA 2017; 254:881-900. [PMID: 27460470 DOI: 10.1007/s00709-016-0998-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/20/2016] [Indexed: 05/16/2023]
Abstract
Pollen ontogeny in Pancratium maritimum L. was studied from the sporogenous cell to mature pollen grain stages using transmission electron, scanning electron, and light microscopy to determine whether the pollen development in P. maritimum follows the basic scheme in angiosperms or not. In the course of microsporogenesis and microgametogenesis, special attention was given to the considerable ultrastructural changes that are observed in the cytoplasm of microsporocytes, microspores, and mature pollen grains throughout the successive stages of pollen development. Microsporocyte differentiation concerning number and ultrastructure of organelles facilitates the transition of microsporocytes from the sporophytic phase to the gametophytic phase. However, cytoplasmic differentiation of generative and vegetative cells supports their functional distinctness and pollen maturation. Although microsporogenesis and microgametogenesis in P. maritimum generally follow the usual angiosperm pattern, abnormalities such as formation of unreduced gametes were observed. During normal microsporogenesis, meiocytes undergo meiosis and successive cytokinesis, resulting in the formation of isobilateral, decussate, and linear tetrads. Subsequent to the development of free and vacuolated microspores, the first mitotic division occurs and bicellular monosulcate pollen grains are produced. Pollen grains are shed from the anther at binucleate stage. During pollen ontogeny, three periods of vacuolization were observed: in meiocytes, in mononucleate free microspores, and in the generative cell.
Collapse
Affiliation(s)
- Sevil Tütüncü Konyar
- Department of Biology, Faculty of Science, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
5
|
Mursalimov S, Sidorchuk Y, Deineko E. Analysis of cytomixis in tobacco microsporocytes with confocal laser scanning microscopy. PROTOPLASMA 2017; 254:539-545. [PMID: 27072984 DOI: 10.1007/s00709-016-0973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Confocal laser scanning microscopy for the first time is used to examine the structure of the tobacco microsporocytes involved in the intercellular migration of nuclei (cytomixis). As is observed, the cytomictic channels are distributed over the surface of tobacco microsporocytes in a non-random manner and their number depends on the meiotic stage. Analysis of non-squash cells demonstrates the differences in cytological patterns of cytomixis in a normal meiosis of control tobacco plants (SR1 line) and the abnormal meiosis of polyploids. As a rule, two to three adjacent cells are involved in cytomixis during meiosis of control tobacco plants; after cytomixis, several micronuclei are formed in recipient cells; cytoplasts (enucleated cells) are rare; and polyads are undetectable. In the meiosis of polyploids, cytomixis is massive, with a larger number of cells (sometimes, over ten) involved in nuclear migration simultaneously; recipient cells on completion of cytomixis develop tens of micronuclei; cytoplasts and polyads are frequently detectable.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation.
| | - Yuri Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
6
|
Sidorchuk YV, Kravets EA, Mursalimov SR, Plokhovskaya SG, Goryunova II, Yemets AI, Blume YB, Deineko EV. Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mursalimov S, Sidorchuk Y, Demidov D, Meister A, Deineko E. A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis. PROTOPLASMA 2016; 253:1583-1588. [PMID: 26553378 DOI: 10.1007/s00709-015-0907-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The effect of plant ploidy level on the rate of cytomixis in microsporogenesis has been analyzed with the help of a unique model, the collection of tobacco plants of different ploidies (2n = 2x = 24, 4x = 48, 6x = 72, and 8x = 96). As has been shown, the rate of cytomixis proportionally increases in 6x and 8x cytotypes, being rather similar in 2x and 4x plants. The rate of cytomixis is highly variable, differing even in the genetically identical plants grown under the same conditions. The cytological pattern of cytomixis in the microsporogenesis of control 4x plants has been compared with the corresponding patterns of 2x, 6x, and 8x plants. Involvement of cytomixis in production of unreduced gametes and stabilization of the newly formed hybrid and polyploidy genomes is discussed.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia.
| | - Yuri Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Kumar P, Singhal VK. Morphological and Ecological Adaptations, and Cytological Studies in Astragalus rhizanthus Royle ex Benth. (Papilionaceae), an Endemic to Himalayas. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Puneet Kumar
- Botanical Survey of India, Northern Regional Centre
| | | |
Collapse
|
9
|
Mursalimov S, Sidorchuk Y, Baiborodin S, Deineko E. Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biol Int 2015; 39:491-5. [PMID: 25492305 DOI: 10.1002/cbin.10406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/09/2022]
Abstract
Cytomixis is the migration of nuclei from one cell to another in higher plants, most frequently observable during microsporogenesis, which has a potential evolutionary significance. Currently, a major challenge is to label the chromatin migrating between cells to clarify its further fate. We have for the first time succeeded in visualizing the telomeric chromatin regions in the nuclei migrating between cells using fluorescent in situ hybridization. It has been shown that the telomeric signals in tobacco microsporocytes are randomly distributed in migrating nuclei without any deviations from their normal meiotic dynamics. According to our data, the chromatin migrating during cytomixis always contains telomeres and the telomeric signals are retained in the micronuclei formed after cytomixis.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | | | | | | |
Collapse
|
10
|
Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. FRONTIERS IN PLANT SCIENCE 2015; 6:846. [PMID: 26528310 PMCID: PMC4600909 DOI: 10.3389/fpls.2015.00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 05/16/2023]
Abstract
Cytomixis is a poorly studied process of nuclear migration between plant cells. It is so far unknown what drives cytomixis and what is the functional state of the chromatin migrating between cells. Using immunostaining, we have analyzed the distribution of posttranslational histone modifications (methylation, acetylation, and phosphorylation) that reflect the functional state of chromatin in the tobacco microsporocytes involved in cytomixis. We demonstrate that the chromatin in the cytomictic cells does not differ from the chromatin in intact microsporocytes according to all 14 analyzed histone modification types. We have also for the first time demonstrated that the migrating chromatin contains normal structures of the synaptonemal complex (SC) and lacks any signs of apoptosis. As has been shown, the chromatin migrating between cells in cytomixis is neither selectively heterochromatized nor degraded both before its migration to another cell and after it enters a recipient cell as micronuclei. We also showed that cytomictic chromatin contains marks typical for transcriptionally active chromatin as well as heterochromatin. Moreover, marks typical for chromosome condensation, SC formation and key proteins required for the formation of bivalents were also detected at migrated chromatin.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Natalya Permyakova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
- *Correspondence: Dmitri Demidov,
| |
Collapse
|
11
|
Rana PK, Kumar P, Singhal VK. Cytomixis and Associated Abnormalities during Male Meiosis in Lindelofia longiflora var. falconeri (Boraginaceae). CYTOLOGIA 2014. [DOI: 10.1508/cytologia.79.535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Mursalimov SR, Sidorchuk YV, Deineko EV. New insights into cytomixis: specific cellular features and prevalence in higher plants. PLANTA 2013; 238:415-423. [PMID: 23775439 DOI: 10.1007/s00425-013-1914-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/05/2013] [Indexed: 05/27/2023]
Abstract
The phenomenon of intercellular migration of nuclei in plant tissues (cytomixis) was discovered over a century ago, which has been followed by numerous attempts to clarify the essence of this process as well as to determine its causes and consequences. Most attention of researchers has been paid to cytomixis in microsporogenesis, since the transfer of part of genetic material between microsporocytes may influence the ploidy level of the produced pollen and, presumably, have an evolutionary significance. This review compiles the data on cytological pattern of cytomixis and proposes a scheme as to how cytomictic channels are formed and function in angiosperms. The prevalence of cytomixis in different plant taxa is analyzed using the published data. The causes, mechanisms, and consequences of the nuclear migration between cells in plant tissues are discussed.
Collapse
Affiliation(s)
- Sergey R Mursalimov
- Laboratory of Plant Bioengineering, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation.
| | | | | |
Collapse
|
13
|
|