1
|
Akhtar A, Lata M, Sunsunwal S, Yadav A, Lnu K, Subramanian S, Ramya TNC. New carbohydrate binding domains identified by phage display based functional metagenomic screens of human gut microbiota. Commun Biol 2023; 6:371. [PMID: 37019943 PMCID: PMC10076258 DOI: 10.1038/s42003-023-04718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Uncultured microbes represent a huge untapped biological resource of novel genes and gene products. Although recent genomic and metagenomic sequencing efforts have led to the identification of numerous genes that are homologous to existing annotated genes, there remains, yet, an enormous pool of unannotated genes that do not find significant sequence homology to existing annotated genes. Functional metagenomics offers a way to identify and annotate novel gene products. Here, we use functional metagenomics to mine novel carbohydrate binding domains that might aid human gut commensals in adherence, gut colonization, and metabolism of complex carbohydrates. We report the construction and functional screening of a metagenomic phage display library from healthy human fecal samples against dietary, microbial and host polysaccharides/glycoconjugates. We identify several protein sequences that do not find a hit to any known protein domain but are predicted to contain carbohydrate binding module-like folds. We heterologously express, purify and biochemically characterize some of these protein domains and demonstrate their carbohydrate-binding function. Our study reveals several previously unannotated carbohydrate-binding domains, including a levan binding domain and four complex N-glycan binding domains that might be useful for the labeling, visualization, and isolation of these glycans.
Collapse
Affiliation(s)
- Akil Akhtar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Amit Yadav
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kajal Lnu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srikrishna Subramanian
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Sato Y, Takebe H, Tominaga K, Oishi K, Kumagai H, Yoshida T, Hirooka H. Taxonomic and functional characterization of the rumen microbiome of Japanese Black cattle revealed by 16S rRNA gene amplicon and metagenome shotgun sequencing. FEMS Microbiol Ecol 2021; 97:6447535. [PMID: 34864967 DOI: 10.1093/femsec/fiab152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/28/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to determine the taxonomic and functional characteristics of the Japanese Black (JB) steer rumen microbiome. The rumen microbiomes of six JB steers (age 14.7 ± 1.44 months) and six JB sires × Holstein dams crossbred (F1) steers (age 11.1 ± 0.39 months), fed the same diet, were evaluated. Based on 16S rRNA gene sequencing, the beta diversity revealed differences in microbial community structures between the JB and F1 rumen. Shotgun sequencing showed that Fibrobacter succinogenes and two Ruminococcus spp., which are related to cellulose degradation were relatively more abundant in the JB steer rumen than in the F1 rumen. Furthermore, the 16S rRNA gene copy number of F. succinogenes was significantly higher in the JB steer rumen than in the F1 rumen according to quantitative real-time polymerase chain reaction analysis. Genes encoding the enzymes that accelerate cellulose degradation and those associated with hemicellulose degradation were enriched in the JB steer rumen. Although Prevotella spp. were predominant both in the JB and F1 rumen, the genes encoding carbohydrate-active enzymes of Prevotella spp. may differ between JB and F1.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Hiroaki Takebe
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Kento Tominaga
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Kazato Oishi
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Hajime Kumagai
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| | - Hiroyuki Hirooka
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Kim SY, Kim H, Kim YJ, Jung DH, Seo DH, Jung JH, Park CS. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium. Int J Biol Macromol 2021; 193:1340-1349. [PMID: 34740684 DOI: 10.1016/j.ijbiomac.2021.10.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A putative type II pullulanase gene, pulP, was identified in Bifidobacterium adolescentis P2P3. PulP possesses an α-amylase domain at the N-terminus and a pullulanase type I domain at the C-terminus, as well as three carbohydrate-binding modules (one CBM25 and two CBM41s) between them. The native PulP and four truncated mutant recombinant proteins (PulPΔCΔP, PulPΔP, PulPΔAΔC, and PulPΔA), in which each of the two catalytic domains and/or the CBMs were deleted, were produced in Escherichia coli and their specific properties were characterized. The removal of either catalytic domain abolished the corresponding catalytic activity of the wild-type enzyme. Deletion of the C-terminal domain resulted in a drastic decrease in the optimal temperature and thermostability, indicating that the pullulanase domain might be related to the temperature dependency of the enzyme. In addition, the elimination of the CBMs in the mutant proteins led to a loss of binding affinity toward raw substrates as well as the loss of their hydrolysis activities compared to the wild-type enzyme. HPAEC and TLC analyses proved that PulP and its mutants could hydrolyze α-glucans into maltotriose as their main product. These results suggest that PulP may play an important role in α-glucan metabolism in B. adolescentis P2P3.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyeran Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
4
|
Zeng J, Guo J, Tu Y, Yuan L. Functional study of C-terminal domain of the thermoacidophilic raw starch-hydrolyzing α-amylase Gt-amy. Food Sci Biotechnol 2020; 29:409-418. [PMID: 32257525 DOI: 10.1007/s10068-019-00673-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022] Open
Abstract
Since the thermoacidophilic raw-starch hydrolyzing α-amylase Gt-amy can effectively hydrolyze corn starch under starch liquefaction conditions, it has potential for many industrial applications. To identify the raw starch-binding domain of Gt-amy, a C-terminal domain (CTD)-truncated mutant (Gt-amy-T) was constructed, and its enzymatic properties were compared with Gt-amy. In comparison to CTD of Gt-amy, which could effectively bind corn starch, the Gt-amy-T could not bind to and hydrolyze corn starch under similar conditions. In addition, Gt-amy-T showed significantly lower thermal activity and thermal stability. Using soluble starch as the substrate, the k cat of Gt-amy-T at 80 °C was approximately 77.9% of that of Gt-amy. The half-life of Gt-amy at 80 °C was 3 h, while that of Gt-amy-T was 2 h. These results reveal that the CTD plays a vital role in raw starch binding and degradation by Gt-amy and helps Gt-amy maintain thermal activity and stability.
Collapse
Affiliation(s)
- Jing Zeng
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| | - Jianjun Guo
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| | - Yikun Tu
- 2School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Lin Yuan
- 1Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang, 330096 Jiangxi Province China
| |
Collapse
|
5
|
Janeček Š, Mareček F, MacGregor EA, Svensson B. Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 2019; 37:107451. [PMID: 31536775 DOI: 10.1016/j.biotechadv.2019.107451] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023]
Abstract
The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - E Ann MacGregor
- 2 Nicklaus Green, Livingston EH54 8RX, West Lothian, United Kingdom
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Armenta S, Sánchez-Cuapio Z, Munguia ME, Pulido NO, Farrés A, Manoutcharian K, Hernandez-Santoyo A, Moreno-Mendieta S, Sánchez S, Rodríguez-Sanoja R. The role of conserved non-aromatic residues in the Lactobacillus amylovorus α-amylase CBM26-starch interaction. Int J Biol Macromol 2019; 121:829-838. [DOI: 10.1016/j.ijbiomac.2018.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
7
|
Takahama U, Hirota S. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct 2018; 9:677-687. [DOI: 10.1039/c7fo01539a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrophobic flavonoids can suppress starch digestion in the intestine by forming starch-flavonoid complexes.
Collapse
Affiliation(s)
- Umeo Takahama
- Department of Health and Nutritional Care
- Faculty of Allied Health Sciences
- University of East Asia
- Shimonoseki
- Japan
| | - Sachiko Hirota
- Department of Health and Nutritional Care
- Faculty of Allied Health Sciences
- University of East Asia
- Shimonoseki
- Japan
| |
Collapse
|
8
|
Montor-Antonio JJ, Hernández-Heredia S, Ávila-Fernández Á, Olvera C, Sachman-Ruiz B, Del Moral S. Effect of differential processing of the native and recombinant α-amylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties. 3 Biotech 2017; 7:336. [PMID: 28955633 DOI: 10.1007/s13205-017-0954-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 12/07/2022] Open
Abstract
AmyJ33, an α-amylase isolated from Bacillus amyloliquefaciens JJC33M, has been characterized as a non-metalloenzyme that hydrolyzes raw starch. In this work, the gene that codifies for AmyJ33 was isolated and cloned. The recombinant α-amylase (AmyJ33r) produced had a molecular weight of 72 kDa, 25 kDa higher than the native α-amylase (AmyJ33). Our results suggest that the C-terminal was processed in a different way in the native and the recombinant enzyme causing the difference observed in the molecular weight. Additionally, the enzyme activity, specificity and biochemical behavior were affected by this larger C-terminal extra region in AmyJ33r, since the enzyme lost the ability to hydrolyze raw starch compared to the native but increased its thermal stability and pH stability, and modified the profile of activity toward alkaline pH. It is suggested that the catalytic domain in recombinant enzyme, AmyJ33r, could be interfered or blocked by the amino acids involved in the C-terminal additional region producing changes in the enzyme properties.
Collapse
Affiliation(s)
- Juan José Montor-Antonio
- División de Estudios de Posgrado, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| | - Sarahi Hernández-Heredia
- Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, CP 86150 Villahermosa, Centro, Tabasco Mexico
| | - Clarita Olvera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, CP 62210 Cuernavaca, Morelos Mexico
| | - Bernardo Sachman-Ruiz
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CP 62550 Jiutepec, Morelos Mexico
| | - Sandra Del Moral
- División de Estudios de Posgrado, Universidad del Papaloapan, Circuito Central 200, CP 68400 Tuxtepec, Oaxaca Mexico
| |
Collapse
|
9
|
Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass. Sci Rep 2017. [PMID: 28623337 PMCID: PMC5473887 DOI: 10.1038/s41598-017-03927-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.
Collapse
|
10
|
Janeček Š, Majzlová K, Svensson B, MacGregor EA. The starch-binding domain family CBM41-Anin silicoanalysis of evolutionary relationships. Proteins 2017; 85:1480-1492. [DOI: 10.1002/prot.25309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Štefan Janeček
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
- Department of Biology; Faculty of Natural Sciences, University of SS. Cyril and Methodius; Trnava Slovakia
| | - Katarína Majzlová
- Institute of Molecular Biology, Slovak Academy of Sciences; Bratislava Slovakia
| | - Birte Svensson
- Department of Biotechnology and Biomedicine; Technical University of Denmark; Kgs. Lyngby Denmark
| | | |
Collapse
|
11
|
Božić N, Lončar N, Slavić MŠ, Vujčić Z. Raw starch degrading α-amylases: an unsolved riddle. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStarch is an important food ingredient and a substrate for the production of many industrial products. Biological and industrial processes involve hydrolysis of raw starch, such as digestion by humans and animals, starch metabolism in plants, and industrial starch conversion for obtaining glucose, fructose and maltose syrup or bioethanol. Raw starch degrading α-amylases (RSDA) can directly degrade raw starch below the gelatinization temperature of starch. Knowledge of the structures and properties of starch and RSDA has increased significantly in recent years. Understanding the relationships between structural peculiarities and properties of RSDA is a prerequisite for efficient application in different aspects of human benefit from health to the industry. This review summarizes recent advances on RSDA research with emphasizes on representatives of glycoside hydrolase family GH13. Definite understanding of raw starch digesting ability is yet to come with accumulating structural and functional studies of RSDA.
Collapse
|
12
|
|
13
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
14
|
Valk V, Lammerts van Bueren A, Kaaij RM, Dijkhuizen L. Carbohydrate‐binding module 74 is a novel starch‐binding domain associated with large and multidomain α‐amylase enzymes. FEBS J 2016; 283:2354-68. [DOI: 10.1111/febs.13745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Vincent Valk
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| | | | - Rachel M. Kaaij
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology Groningen Biomolecular Sciences and Biotechnology Institute (GBB) The Netherlands
| |
Collapse
|
15
|
Barchiesi J, Hedin N, Gomez-Casati DF, Ballicora MA, Busi MV. Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Res Notes 2015; 8:613. [PMID: 26510916 PMCID: PMC4625611 DOI: 10.1186/s13104-015-1598-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Starch-binding domains are key modules present in several enzymes involved in polysaccharide metabolism. These non-catalytic modules have already been described as essential for starch-binding and the catalytic activity of starch synthase III from the higher plant Arabidopsis thaliana. In Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, there are three SSIII isoforms, known as Ostta SSIII-A, SSIII-B and SSIII-C. RESULTS In this work, using in silico and in vitro characterization techniques, we have demonstrated that Ostta SSIII-A, SSIII-B and SSIII-C contain two, three and no starch-binding domains, respectively. Additionally, our phylogenetic analysis has indicated that OsttaSSIII-B, presenting three N-terminal SBDs, is the isoform more closely related to higher plant SSIII. Furthermore, the sequence alignment and homology modeling data gathered showed that both the main 3-D structures of all the modeled domains obtained and the main amino acid residues implicated in starch binding are well conserved in O. tauri SSIII starch-binding domains. In addition, adsorption assays showed that OsttaSSIII-A D2 and SSIII-B D2 domains are the two that make the greatest contribution to amylose and amylopectin binding, while OsttaSSIII-B D1 is also important for starch binding. CONCLUSIONS The results presented here suggest that differences between OsttaSSIII-A and SSIII-B SBDs in the number of and binding of amino acid residues may produce differential affinities for each isoform to polysaccharides. Increasing the knowledge about SBDs may lead to their employment in biomedical and industrial applications.
Collapse
Affiliation(s)
- Julieta Barchiesi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Nicolás Hedin
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 405 Flanner Hall, 1068 W Sheridan Road, Chicago, IL, 60660, USA.
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
16
|
Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains. Appl Environ Microbiol 2015; 81:6610-20. [PMID: 26187958 DOI: 10.1128/aem.01029-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation.
Collapse
|