1
|
Sánchez García E, Torres-Alvarez C, Morales Sosa EG, Pimentel-González M, Villarreal Treviño L, Amaya Guerra CA, Castillo S, Rodríguez Rodríguez J. Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:665. [PMID: 39061347 PMCID: PMC11273670 DOI: 10.3390/antibiotics13070665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In this research, several analyses were carried out on concentrated fractions of Mexican oregano essential oil (Poliomintha longiflora Gray) in order to determine its ability to inhibit the growth and the motility of Escherichia coli (swimming), Pseudomonas aeruginosa (swimming), and Proteus vulgaris (swarming); these Gram-negative bacteria associated with urinary tract infections are motile due to the presence of flagella, which is considered an important virulence factor that favors their motility when trying to reach the target organ and cause an infection. Also, the resistance pattern to antibiotics of each strain was determined. The results showed resistance pattern (8 out of 12 antibiotics tested) for P. aureginosa, while E. coli and P. vulgaris were resistant to 4 antibiotics out of the 12 tested. On the other hand, fractionated oregano caused an inhibition of growth and a reduction in motility, varying between fractions and among bacteria. Fraction 4 showed major growth reduction, with MBC values ranging from 0.002 to 23.7 mg/mL. Treatment with fractionated oregano (F1, F2, F3, F4) reduced the motility by 92-81% for P. vulgaris, 90-83% for E. coli, and 100-8.9% for P. aeruginosa. These results demonstrated a higher performance with a lower application dose due to its high content of Carvacrol and Thymol; unlike other concentrated fractions, this synergy of oxygenated monoterpenes may cause greater antimicrobial activity.
Collapse
Affiliation(s)
- Eduardo Sánchez García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Cynthia Torres-Alvarez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa s/n, Ex-Hacienda “El Canadá”, General Escobedo 66050, NL, Mexico;
| | - Elías G. Morales Sosa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Mariana Pimentel-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Licet Villarreal Treviño
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Carlos Abel Amaya Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Sandra Castillo
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - José Rodríguez Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
2
|
Mukhtar MH, El-Readi MZ, Elzubier ME, Fatani SH, Refaat B, Shaheen U, Adam Khidir EB, Taha HH, Eid SY. Cymbopogon citratus and Citral Overcome Doxorubicin Resistance in Cancer Cells via Modulating the Drug's Metabolism, Toxicity, and Multidrug Transporters. Molecules 2023; 28:molecules28083415. [PMID: 37110649 PMCID: PMC10143904 DOI: 10.3390/molecules28083415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Multidrug resistance (MDR) is the major complex mechanism that causes the failure of chemotherapy, especially with drugs of natural origin such as doxorubicin (DOX). Intracellular drug accumulation and detoxification are also involved in cancer resistance by reducing the susceptibility of cancer cells to death. This research aims to identify the volatile composition of Cymbopogon citratus (lemon grass; LG) essential oil and compare the ability of LG and its major compound, citral, to modulate MDR in resistant cell lines. The composition of LG essential oil was identified using gas chromatography mass spectrometry (GC-MS). In addition, a comparison of the modulatory effects of LG and citral, performed on breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) MDR cell lines, were compared to their parent sensitive cells using the MTT assay, ABC transporter function assays, and RT-PCR. Oxygenated monoterpenes (53.69%), sesquiterpene hydrocarbons (19.19%), and oxygenated sesquiterpenes (13.79%) made up the yield of LG essential oil. α-citral (18.50%), β-citral (10.15%), geranyl acetate (9.65%), ylangene (5.70), δ-elemene (5.38%), and eugenol (4.77) represent the major constituents of LG oil. LG and citral (20 μg/mL) synergistically increased DOX cytotoxicity and lowered DOX dosage by >3-fold and >1.5-fold, respectively. These combinations showed synergism in the isobologram and CI < 1. DOX accumulation or reversal experiment confirmed that LG and citral modulated the efflux pump function. Both substances significantly increased DOX accumulation in resistant cells compared to untreated cells and verapamil (the positive control). RT-PCR confirmed that LG and citral targeted metabolic molecules in resistant cells and significantly downregulated PXR, CYP3A4, GST, MDR1, MRP1, and PCRP genes. Our results suggest a novel dietary and therapeutic strategy combining LG and citral with DOX to overcome multidrug resistance in cancer cells. However, these results should be confirmed by additional animal experiments before being used in human clinical trials.
Collapse
Affiliation(s)
- Mohammed Hasan Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| | - Sameer H Fatani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| | - Usama Shaheen
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11829, Egypt
| | - Elshiekh Babiker Adam Khidir
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| | - Hesham Hamada Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al-Abdeyah, Makkah 24381, Saudi Arabia
| |
Collapse
|
3
|
Rusková M, Opálková Šišková A, Mosnáčková K, Gago C, Guerreiro A, Bučková M, Puškárová A, Pangallo D, Antunes MD. Biodegradable Active Packaging Enriched with Essential Oils for Enhancing the Shelf Life of Strawberries. Antioxidants (Basel) 2023; 12:antiox12030755. [PMID: 36979002 PMCID: PMC10044849 DOI: 10.3390/antiox12030755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The strawberry (Fragaria ananassa) is a nutrient-rich fruit with high content of health-beneficial compounds. However, strawberries are susceptible to mechanical damage and microbiological contamination which can cause changes in fruit sensory properties. These changes consequently effect on ripening and shelf life of the strawberry. In recent years, essential oils (EOs) have been famous for their antimicrobial and antioxidant properties and are promising ecological alternatives to chemical antimicrobial substances. Nowadays, active packaging is one of several techniques developed for slowing down the metabolic processes of fresh fruits. Poly(lactic acid) (PLA) is one of the several polymers suitable for encapsulation EOs, whereas at the same time represent non-toxic, biodegradable, and compostable polymer derived from renewable resources. Suitable packaging prolongs the shelf life of fruit, keeps the products at the highest possible nutrition level, improves quality, and attracts customer attention. In the current study, we encapsulated EOs (lemongrass and oregano) into a PLA and poly(3-hydroxybutyrate) (PHB) packaging film and explored their antimicrobial and antioxidant properties. Moreover, biochemical and quality parameters for strawberry preservation and shelf-life extension were also assessed. Our tested active packaging film with EOs was proven to be useful for postharvest quality maintenance and shelf-life extension of strawberries, with PLA/PHB/ATBC + 5% lemongrass EO being slightly better than PLA/PHB/ATBC + 5% oregano EO.
Collapse
Affiliation(s)
- Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
| | - Katarína Mosnáčková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Custódia Gago
- Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, FCT, Universidade do Algarve, edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adriana Guerreiro
- Centre for Electronics, Optoelectronics and Telecommunications, FCT, Universidade do Algarve, edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Maria Dulce Antunes
- Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, FCT, Universidade do Algarve, edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Yeo HJ, Kwon MJ, Han SY, Jeong JC, Kim CY, Park SU, Park CH. Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040797. [PMID: 36840144 PMCID: PMC9959714 DOI: 10.3390/plants12040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 05/14/2023]
Abstract
Agastache rugosa (popularly known as Korean mint) belongs to the Lamiaceae family and comprises 22 species of perennial aromatic medicinal species native to East Asian countries, such as Korea, Taiwan, Japan, and China. A. rugosa contains many phenolic compounds that exhibit pharmacological and physiological activities, including antioxidant, anticancer, antiviral, antifungal, and antibacterial activities. The highest concentrations of rosmarinic acid and its isomers have been reported in the roots of A. rugosa. In this in vitro study, hairy roots of A. rugosa were obtained and the carbohydrates (sorbitol, mannitol, glucose, maltose, galactose, mannose, and sucrose) were evaluated to determine those that were optimal for rosmarinic acid production and hairy root growth. Antioxidant and antibacterial activities of extracts of A. rugosa were also assessed. The best carbon source for A. rugosa hairy root cultures was sucrose, considering biomass productivity (0.460 ± 0.034 mg/30 mL), rosmarinic acid production (7.656 ± 0.407 mg/g dry weight), and total phenolic content (12.714 ± 0.202 mg/g gallic acid equivalent). Antioxidant and antimicrobial activities were displayed by A. rugosa hairy roots cultured in liquid medium supplemented with 100 mM sucrose. Twenty-five bacterial strains, including multidrug-resistant bacteria and one pathogenic yeast strain, were used for antimicrobial screening of A. rugosa hairy roots. The hairy root extracts displayed antibacterial activity against Micrococcus luteus (KCTC 3063) and Bacillus cereus (KCTC 3624). The inhibition of these bacteria was greater using A. rugosa hairy roots with the highest levels of phenolic compounds cultured in the presence of sucrose, compared to hairy roots with the lowest levels of phenolic compounds cultured in the presence of fructose. Considering hairy root biomass, phenolic compound production, and antibacterial activity, sucrose is the best carbon source for A. rugosa hairy root cultures.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Min Jae Kwon
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Sang Yeon Han
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Correspondence: (S.U.P.); (C.H.P.)
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
- Correspondence: (S.U.P.); (C.H.P.)
| |
Collapse
|
5
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
6
|
Van LT, Hagiu I, Popovici A, Marinescu F, Gheorghe I, Curutiu C, Ditu LM, Holban AM, Sesan TE, Lazar V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. PLANTS 2022; 11:plants11152003. [PMID: 35956481 PMCID: PMC9370326 DOI: 10.3390/plants11152003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative Gram-negative opportunistic pathogen, frequently encountered in difficult-to-treat hospital-acquired infections and also wastewaters. The natural resistance of this pathogen, together with the frequent occurrence of multidrug-resistant strains, make current antibiotic therapy inefficient in treating P. aeruginosa infections. Antibiotic therapy creates a huge pressure to select resistant strains in clinical settings but also in the environment, since high amounts of antibiotics are released in waters and soil. Essential oils (EOs) and plant-derived compounds are efficient, ecologic, and sustainable alternatives in the management of various diseases, including infections. In this study, we evaluated the antibacterial effects of four commercial essential oils, namely, tea tree, thyme, sage, and eucalyptus, on 36 P. aeruginosa strains isolated from hospital infections and wastewaters. Bacterial strains were characterized in terms of virulence and antimicrobial resistance. The results show that most strains expressed soluble pore toxin virulence factors such as lecithinase (89–100%) and lipase (72–86%). All P. aeruginosa strains were positive for alginate encoding gene and 94.44% for protease IV; most of the strains were exotoxin producers (i.e., 80.56% for the ExoS gene, 77.78% for the ExoT gene, while the ExoU gene was present in 38.98% of the strains). Phospholipase-encoding genes (plc) were identified in 91.67/86.11% of the cases (plcH/plcN genes). A high antibiotic resistance level was identified, most of the strains being resistant to cabapenems and cephalosporins. Cabapenem resistance was higher in hospital and hospital wastewater strains (55.56–100%) as compared to those in urban wastewater. The most frequently encountered encoding genes were for extended spectrum β-lactamases (ESBLs), namely, blaCTX-M (83.33% of the strains), blaSHV (80.56%), blaGES (52.78%), and blaVEB (13.89%), followed by carbapenemase-encoding genes (blaVIM, 8.33%). Statistical comparison of the EOs’ antimicrobial results showed that thyme gave the lowest minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) in P. aeruginosa-resistant isolates, making this EO a competitive candidate for the development of efficient and ecologic antimicrobial alternatives.
Collapse
Affiliation(s)
- Luc Tran Van
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ilinca Hagiu
- The Overlake Private School, 108th St., Redmond, WA 98053, USA;
| | - Adelina Popovici
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
| | - Florica Marinescu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Irina Gheorghe
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen Curutiu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Correspondence:
| | - Lia Mara Ditu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Tatiana Eugenia Sesan
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
| | - Veronica Lazar
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
7
|
Abstract
Peganum harmala L., known as ′Harmel′, is a plant widely used in the traditional Algerian medicine. Aim. The purpose of this work is to study the antioxidant, antiproliferative and antimicrobial potential of Peganum harmala extracts. Methods. Colorimetric methods were used to quantify phenolic compounds, while the antioxidant activity was estimated in vitro using DPPH/ABTS radical scavenging assay, ferric reducing power, β-carotene bleaching assay, total antioxidant capacity, and ferrous iron chelating assay. The agar well diffusion and the broth microdilution method were used to evaluate the antibacterial activity and the MTT assay was used to test the cytotoxicity of the extracts. Results. The ethanolic extracts of Peganum harmala L. showed the highest polyphenols content and the potent antioxidant, gave a good activity against Gram + and Gram- bacteria and good antifungal effect and were more cytotoxic to the HeLa cell line. Conclusions. It is concluded that selected plants could be a potential source of bioactive compounds with antioxidant, antimicrobial and antiproliferative potential. Hence, it is indicated to further investigate this plant in vitro as well as in vivo for new drug discovery.
Collapse
|
8
|
Vihanova K, Houdkova M, Promgool T, Urbanova K, Kanokmedhakul S, Kokoska L. In vitro growth‐inhibitory effect of essential oils and supercritical carbon dioxide extracts from
Cinnamomum
spp. barks and fruits against food bacterial pathogens in liquid and vapor phase. J Food Saf 2021. [DOI: 10.1111/jfs.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katerina Vihanova
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague 6 Czech Republic
| | - Marketa Houdkova
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague 6 Czech Republic
| | - Trinop Promgool
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Klara Urbanova
- Department of Sustainable Technologies, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague 6 Czech Republic
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Ladislav Kokoska
- Department of Crop Science and Agroforestry, Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague 6 Czech Republic
| |
Collapse
|
9
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
10
|
Kapustová M, Puškárová A, Bučková M, Granata G, Napoli E, Annušová A, Mesárošová M, Kozics K, Pangallo D, Geraci C. Biofilm inhibition by biocompatible poly(ε-caprolactone) nanocapsules loaded with essential oils and their cyto/genotoxicity to human keratinocyte cell line. Int J Pharm 2021; 606:120846. [PMID: 34216769 DOI: 10.1016/j.ijpharm.2021.120846] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Essential oils (EOs) of Thymus capitatus (Th) carvacrol chemotype and Origanum vulgare (Or) thymol and carvacrol chemotype were encapsulated in biocompatible poly(ε-caprolactone) nanocapsules (NCs). These nanosystems exhibited antibacterial, antifungal, and antibiofilm activities against Staphylococcus aureus, Escherichia coli, and Candida albicans. Th-NCs and Or-NCs were more effective against all tested strains than pure EOs and at the same time were not cytotoxic on HaCaT (T0020001) human keratinocyte cell line. The genotoxic effects of EO-NCs and EOs on HaCaT were evaluated using an alkaline comet assay for the first time, revealing that Th-NCs and Or-NCs did not induce DNA damage compared with untreated control HaCaT cells in vitro after 24 h. The cells morphological changes were assessed by label-free live cell Raman imaging. This study demonstrate the ability of poly(ε-caprolactone) nanocapsules loaded with thyme and oregano EOs to reduce microbial and biofilm growth and could be an ecological alternative in the development of new antimicrobial strategies.
Collapse
Affiliation(s)
- Magdaléna Kapustová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Giuseppe Granata
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Edoardo Napoli
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Adriana Annušová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84511 Bratislava, Slovakia; Centre for Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Monika Mesárošová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia.
| | - Corrada Geraci
- Istituto Chimica Biomolecolare - Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
11
|
Di Vito M, Smolka A, Proto MR, Barbanti L, Gelmini F, Napoli E, Bellardi MG, Mattarelli P, Beretta G, Sanguinetti M, Bugli F. Is the Antimicrobial Activity of Hydrolates Lower than That of Essential Oils? Antibiotics (Basel) 2021; 10:antibiotics10010088. [PMID: 33477717 PMCID: PMC7831920 DOI: 10.3390/antibiotics10010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Among the top five human infections requiring medical treatment is dermatitis. Treatment of bacterial and fungal skin infections is usually based on antibiotic therapy, which is often ineffective due to the involvement of antibiotic-resistant microbial strains. The aim of this study was to compare the antimicrobial activity of essential oils (EOs) and hydrolates (Hys) extracted from six aromatic plants grown in Italy (Lavandula angustifolia, Lavandula intermedia, Origanum hirtum, Satureja montana, Monarda didyma, and Monarda fistulosa) towards fungal (Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis; Trichophyton soudanense, Trichophyton tonsurans, Trichophyton rubrum, Trichophyton violaceum and Microsporum canis) and bacterial strains (Staphylococcus aureus MRSA, Staphylococcus aureus MSSA, Streptococcus pyogenes, E. faecalis, Enterococcus faecalis VRE, and Enterococcus faecium) potentially pathogenic for human skin. The composition and antimicrobial activity of EOs and Hys were evaluated using the Gas-chromatography mass spectrometry and micro dilution-broth test, respectively. The volatiles’ conversion factors (CFs) were calculated to compare the activity of Hys with that of the corresponding EOs. Data show that, although the minimum inhibitory concentration values of EOs are lower than the corresponding Hys, the volatiles contained in Hys are more effective at inhibiting microbial growth because they are active at lower concentrations.
Collapse
Affiliation(s)
- Maura Di Vito
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Correspondence: ; Tel.: +39-051-209-6267 or +39-06-30154964
| | - Antonina Smolka
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
| | - Maria Rita Proto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Lorenzo Barbanti
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Fabrizio Gelmini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, via P. Gaifami 18, 95126 Catania, Italy;
| | - Maria Grazia Bellardi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università of Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (M.R.P.); (L.B.); (M.G.B.); (P.M.)
| | - Giangiacomo Beretta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (A.S.); (M.S.); (F.B.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
12
|
Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100635] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
The Effect of Ten Essential Oils on Several Cutaneous Drug-Resistant Microorganisms and Their Cyto/Genotoxic and Antioxidant Properties. Molecules 2019; 24:molecules24244570. [PMID: 31847159 PMCID: PMC6943746 DOI: 10.3390/molecules24244570] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, we determined the antimicrobial activity of ten essential oils (EOs)—oregano, thyme, clove, arborvitae, cassia, lemongrass, melaleuca, eucalyptus, lavender, and clary sage—against drug-resistant microorganisms previously isolated from patients with skin infections. The essential oil compositions were determined using gas chromatography coupled to mass spectrometry (GC/MS). The assayed bacteria included Pseudomonas aeruginosa, Proteus vulgaris, Citrobacter koseri, and Klebsiella pneumoniae. Two drug-resistant yeasts (Candidaalbicans and Candida parapsilosis) were also involved in our survey. Oregano, thyme, cassia, lemongrass and arborvitae showed very strong antibacterial and antifungal activity against all tested strains. These results show that these essential oils may be effective in preventing the growth of the drug-resistant microorganisms responsible for wound infections. In this study, the genotoxic effects of tested essential oils on healthy human keratinocytes HaCaT were evaluated using the comet assay for the first time. These results revealed that none of the essential oils induced significant DNA damage in vitro after 24 h. Moreover, the treatment of HaCaT cells with essential oils increased the total antioxidant status (TAS) level. The obtained results indicate that EOs could be used as a potential source of safe and potent natural antimicrobial and antioxidant agents in the pharmaceutical and food industries.
Collapse
|
14
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
15
|
Majewska E, Kozłowska M, Gruczyńska-Sękowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/113152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Marković ZM, Kováčová M, Humpolíček P, Budimir MD, Vajďák J, Kubát P, Mičušík M, Švajdlenková H, Danko M, Capáková Z, Lehocký M, Todorović Marković BM, Špitalský Z. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagnosis Photodyn Ther 2019; 26:342-349. [PMID: 31022579 DOI: 10.1016/j.pdpdt.2019.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 11/26/2022]
Abstract
Despite great efforts, the design of antibacterial surfaces is still a challenge. In this work, results of structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum dots/polydimethylsiloxane surfaces are presented. Antibacterial action of this surface is based on the generation of reactive oxygen species which cause bacteria damage by oxidative stress. At the same time, this surface was not cytotoxic towards the NIH/3T3 cells. Swelling-encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence spectroscopy analyses confirm that hydrophobic carbon quantum dots have been encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain test the improvement of mechanical properties of these nanocomposites is established. It is shown by electron paramagnetic resonance spectroscopy and luminescence method that nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae and is very effective after only a 15 min irradiation.
Collapse
Affiliation(s)
- Zoran M Marković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O.B. 522, 11001 Belgrade, Serbia.
| | - Mária Kováčová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic
| | - Milica D Budimir
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O.B. 522, 11001 Belgrade, Serbia
| | - Jan Vajďák
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Helena Švajdlenková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic
| | - Marián Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic
| | | | - Zdeno Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia.
| |
Collapse
|