1
|
Workplace environmental exposure level guide: n-Methyl-2-pyrrolidone. Toxicol Ind Health 2022; 38:309-329. [PMID: 35658636 DOI: 10.1177/07482337221093838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
n-Methyl-2-pyrrolidone (NMP) is a widely used solvent with a mild amine-like odor that can exist in a vapor or aerosol at moderate temperatures. In humans, NMP was reported to induce weak and transient eye irritation and headache. NMP was not a dermal sensitizer and has a low acute toxicity via oral, dermal, and inhalation routes. NMP was not genotoxic/mutagenic in a battery of in vitro and in vivo studies. Furthermore, NMP was not carcinogenic in rats although species-specific liver tumors were identified in mice. Chronic studies in the rat provided a NOAEL of 10 ppm (40 mg/m3) causing only minor effects in males (slightly reduced mean body weight) at 100 ppm (400 mg/m3). Developmental toxicity was considered the critical endpoint (decreased fetal body weights at non-maternally toxic doses). Benchmark dose and PBPK models were utilized to derive an internal dose of 350-470 mg·h/L as a NOAEL for this response and a human equivalent air concentration of 350-490 ppm. With the application of adjustment factors, an 8-h time-weighted average WEEL value of 15 ppm (60 mg/m3) was derived and is expected to provide a significant margin of safety against any potential adverse health effects in workers. To address the potential for respiratory irritation, a short-term exposure level of 30 ppm (120 mg/m3) was derived, and a skin notation is assigned because of the contribution of dermal absorption to the systemic toxicity of NMP.
Collapse
|
2
|
The European Human Biomonitoring Initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) for the aprotic solvents N-methyl-2-pyrrolidone (NMP) and N-ethyl-2-pyrrolidone (NEP). Int J Hyg Environ Health 2021; 238:113856. [PMID: 34619432 PMCID: PMC8573589 DOI: 10.1016/j.ijheh.2021.113856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Toxicologically and/or epidemiologically derived guidance values referring to the internal exposure of humans are a prerequisite for an easy to use health-based interpretation of human biomonitoring (HBM) results. The European Joint Programme HBM4EU derives such values, named human biomonitoring guidance values (HBM-GVs), for priority substances which could be of regulatory relevance for policy makers and have been identified by experts of the participating countries, ministries, agencies and stakeholders at EU and national level. NMP and NEP are such substances for which unresolved policy relevant issues should be clarified by targeted research. Since widespread exposure of the general population in Germany to NMP and NEP was shown for the age groups 3–17 years and 20–29 years, further investigations on exposure to NMP and NEP in other European countries are warranted. The HBM-GVs derived for both solvents focus on developmental toxicity as decisive endpoint. They amount for the sum of the two specific urinary NMP metabolites 5-HNMP and 2-HMSI and likewise of the two specific urinary NEP metabolites 5-HNEP and 2-HESI to 10 mg/L for children and 15 mg/L for adolescents/adults. The values were determined following a consultation process on the value proposals within HBM4EU. A health-based risk assessment was performed using the newly derived HBM-GVGenPop and exposure data from two recent studies from Germany. The risk assessment revealed that even when considering the combined exposure to both substances by applying the Hazard Index approach, the measured concentrations are below the HBM-GVGenPop in all cases investigated (i.e., children, adolescents and young adults). HBM-GVs are a prerequisite for an easy to use health-based risk assessment of human biomonitoring results. For NMP and NEP metabolites in urine, respectively, HBM-GVs were set for children and adolescents/adults. First HBM exposure data indicate widespread exposure of German children, adolescents and young adults to NMP and NEP. The Hazard Index approach revealed that even when combined exposure to both solvents is assessed, HBM-GVs are not exceeded.
Collapse
|
3
|
Dubar M, Lizambard M, Delcourt-Debruyne E, Batool F, Huck O, Siepmann F, Agossa K. In-situforming drug-delivery systems for periodontal treatment: current knowledge and perspectives. Biomed Mater 2021; 16. [PMID: 34500442 DOI: 10.1088/1748-605x/ac254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Several chemical compounds are considered to be promising as adjuvants in the treatment of periodontitis. Antimicrobials, anti-inflammatory drugs or, more recently, pro-regenerative or antioxidant molecules have shown a very interesting potential to improve the outcomes of mechanical biofilm removal and promote the healing of the damaged tissues. However, their clinical effect is often limited by the challenge of achieving effective and prolonged drug delivery within the periodontal lesion, while limiting the risk of toxicity.In-situforming implants (ISFI) are 'implantable' drug-delivery systems that have gained considerable attention over the last few decades due to their multiple biomedical applications. They are liquids that, when injected at the site to be treated, form a semi-solid or solid dosage form that provides safe and locally controlled drug release. This review discusses current data and future prospects for the use of ISFI in periodontal treatment.
Collapse
Affiliation(s)
- Marie Dubar
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Martin Lizambard
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | | | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Florence Siepmann
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Kevimy Agossa
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| |
Collapse
|
4
|
Bone Regeneration Using N-Methyl-2-pyrrolidone as an Enhancer for Recombinant Human Bone Morphogenetic Protein-2 in a Rabbit Sinus Augmentation Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4153073. [PMID: 28680881 PMCID: PMC5478818 DOI: 10.1155/2017/4153073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NBTA) was greatest in BMP/NMP (1.94 ± 0.69 mm2), followed by BMP (1.50 ± 0.72 mm2) and BCP (1.28 ± 0.52 mm2) (P > 0.05). In the center of the augmentation (NBROI_C) and the area close to the sinus membrane (NBROI_M), BMP/NMP produced the largest area of NB (NBROI_C: 0.10 ± 0.11 mm2; NBROI_M: 0.17 ± 0.08 mm2); the corresponding NB values for BCP were 0.05 ± 0.05 mm2 and 0.08 ± 0.09 mm2, respectively (P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls.
Collapse
|
5
|
Stoffmonographie für N-Methyl-2-pyrrolidon (NMP) und „Human-Biomonitoring“-Werte für die Metaboliten 5-Hydroxy-NMP und 2-Hydroxy-N-methylsuccinimid im Urin von Erwachsenen und Kindern. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58:1175-91. [DOI: 10.1007/s00103-015-2217-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Karfeld-Sulzer LS, Ghayor C, Siegenthaler B, de Wild M, Leroux JC, Weber FE. N-methyl pyrrolidone/bone morphogenetic protein-2 double delivery with in situ forming implants. J Control Release 2015; 203:181-8. [PMID: 25697800 DOI: 10.1016/j.jconrel.2015.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/09/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) are growth and differentiation factors involved during development in morphogenesis, organogenesis and later mainly in regeneration processes, in particular in bone where they are responsible for osteoinduction. For more than a decade, recombinant human (rh)BMP-2 has been used in the clinic for lumbar spinal fusion at non-physiological high dosages that appear to be causative for side effects, like male sterility. A possible strategy to reduce the effective amount of rhBMP-2 in the clinic is the co-delivery with an enhancer of BMPs' activity. In an earlier study, we showed that N-methylpyrrolidone (NMP) enhances BMP activity in vitro and in vivo. Here we report on the development of a slow and sustained double delivery of rhBMP-2 and NMP via an in situ forming implant based on poly(lactide-co-glycolide). The results showed that the release of NMP can be adjusted by varying the lactide/glycolide ratio and the polymer's molecular weight. The same applied to rhBMP-2, with release rates that could be sustained from two to three weeks. In the in vivo model of a critical size defect in the calvarial bone of rabbits, the implant containing 50mol% lactide performed better than the one having 75mol% lactide in terms of defect bridging and extent of bony regenerated area. In situ forming implants for the double delivery of the BMP enhancer NMP and rhBMP-2 appear to be promising delivery systems in bone regeneration.
Collapse
Affiliation(s)
- Lindsay S Karfeld-Sulzer
- University Hospital, Division of Cranio-Maxillofacial and Oral Surgery and University of Zurich, Center for Dental Medicine, Oral Biotechnology & Bioengineering, Frauenklinikstrasse 24, 8091 Zürich, Switzerland
| | - Chafik Ghayor
- University Hospital, Division of Cranio-Maxillofacial and Oral Surgery and University of Zurich, Center for Dental Medicine, Oral Biotechnology & Bioengineering, Frauenklinikstrasse 24, 8091 Zürich, Switzerland
| | - Barbara Siegenthaler
- University Hospital, Division of Cranio-Maxillofacial and Oral Surgery and University of Zurich, Center for Dental Medicine, Oral Biotechnology & Bioengineering, Frauenklinikstrasse 24, 8091 Zürich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - Michael de Wild
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH, Zurich, Zurich, Switzerland
| | - Franz E Weber
- University Hospital, Division of Cranio-Maxillofacial and Oral Surgery and University of Zurich, Center for Dental Medicine, Oral Biotechnology & Bioengineering, Frauenklinikstrasse 24, 8091 Zürich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland; CABMM, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
[Guide values for 1-methyl-2-pyrrolidone in indoor air. Report of the German Ad-hoc Working Group on indoor Guidelines of the Indoor Air Hygiene Committee and of the States' Supreme Health Authorities]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014; 57:1232-41. [PMID: 25248818 DOI: 10.1007/s00103-014-2041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The German Ad-hoc Working Group on Indoor Guidelines of the Indoor Air Hygiene Committee and the States' Supreme Health Authorities is issuing indoor air guide values to protect public health. No human studies of sufficient quality are available for health evaluation of 1-methyl-2-pyrrolidone in air. In a well-documented chronic inhalation toxicity study in rats significant impairment of weight gain development has been observed (LOAEC = 400 mg/m(3)). The Working Group used this LOAEC as the point of departure for the derivation of guide value II. The conversion of repeated inhalation to continuous exposure (6-24 h; 5-7 days) used a factor of 5.6. By applying an interspecies factor of 2.5 for toxicodynamics, a factor of 10 to account for individual differences and an additional factor of 2 to include sensitive subgroups, results in a health hazard guide value (RW II) of 1 mg 1-methyl-2-pyrrolidone/m(3) indoor air (rounded). By using the NOAEC of 40 mg/m(3) from the same study and applying the same assessment factors as above a precautionary guide value (RW I) of 0.1 mg 1-methyl-2-pyrrolidone/m(3) is calculated.
Collapse
|
8
|
Sitarek K, Stetkiewicz J, Wąsowicz W. Evaluation of Reproductive Disorders in Female Rats Exposed to N-Methyl-2-Pyrrolidone. ACTA ACUST UNITED AC 2012; 95:195-201. [DOI: 10.1002/bdrb.21001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/02/2011] [Indexed: 11/07/2022]
|
9
|
Determination of N-methyl-2-pyrrolidone and its metabolites in urine by micellar electrokinetic chromatography. OPEN CHEM 2011. [DOI: 10.2478/s11532-011-0062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA fast and accurate micellar electrokinetic capillary chromatography (MEKC) method was developed for monitoring N-methyl-2-pyrrolidone (NMP) exposure. Baseline separation of NMP and its main metabolites: 5-hydroxy-N-methyl-2-pyrrolidone (5HNMP), N-methylsuccinimide (MSI), 2-hydroxy-N-methylsuccinimide (2HMSI), and 2-pyrrolidone (2P) was obtained within 6 min in an uncoated fused silica capillary using 5 mM phosphate buffer and 140 mM sodium dodecyl sulfate (pH 7.1) as background electrolyte (BGE). On-line UV-detection was performed at 200 nm and the applied electric field was 400 V cm−1. Possible interference of BGE-induced system peaks on separation was investigated by computer simulation and no such interference was observed. The developed MEKC method combined with solid phase extraction for sample preparation was successfully applied to the analysis of urine of rats exposed to NMP. The urinary excretion was determined in 0–6 h and 6–24 h specimens collected after an intragastic administration of 308 mg NMP / kg rat body weight. The results of NMP disposition kinetics in rat urine are reported for NMP and metabolites.
Collapse
|
10
|
Assessment of Reproductive Toxicity and Gonadotoxic Potential of N-Methyl-2-Pyrrolidone in Male Rats. Int J Occup Med Environ Health 2008; 21:73-80. [DOI: 10.2478/v10001-008-0006-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|