1
|
Li J, Zhang C, Wang Y, Tian M, Xie C, Hu H. Research progress on the synthesis process, detection method, pharmacological effects and application of glycocholic acid. Front Pharmacol 2025; 15:1492070. [PMID: 39830334 PMCID: PMC11739089 DOI: 10.3389/fphar.2024.1492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This review aims to summarize the research progress of glycocholic acid to promote its broader development and application. Methods This article collects relevant literature from databases such as Science Direct, PubMed, Web of Science, Google Scholar and CNKI from the establishment to 2024, systematically organizing and analyzing aspects of glycocholic acid including its physicochemical properties, synthesis and extraction techniques, detection methods, pharmacological effects, mechanisms of action, clinical research, and application as an excipient. Results Glycocholic acid, as a key conjugated component in bile acids, exhibits various pharmacological effects such as anti-inflammatory and antioxidant activities. Nevertheless, current research on glycocholic acid is insufficient, with synthesis techniques requiring improvement, limited application of detection technologies, and a need for in-depth exploration of its pharmacological mechanisms. Due to its amphiphilic molecular structure, glycocholic acid is primarily used as a pharmaceutical excipient. Conclusion This review summarizes the existing research on glycocholic acid, indicating that future research should strengthen work in this field, including improving synthesis processes and enhancing the sensitivity of detection technologies, to provide a scientific basis for the development of new formulations and drug combinations, thereby promoting the advancement of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiahui Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., Ltd., Chifeng, China
| | - Yang Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Minyuan Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chao Xie
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
2
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm 2020; 585:119484. [PMID: 32485216 DOI: 10.1016/j.ijpharm.2020.119484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The Calu-3 cell line has been largely investigated as a physiological and pharmacological model of the airway epithelial barrier. Its suitability for prediction of drug permeability across the airway epithelia, however, has not been yet evaluated by using large enough set of model drugs. We evaluated two Calu-3 cell models (air-liquid and liquid-liquid) for drug permeability prediction based on the recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. Bidirectional permeability assays using 22 model drugs and several zero permeability markers, as well as using ABC transporter substrates were conducted. Functional activity of P-gp, but not of BCRP was revealed. The potential of the Calu-3 cells to be used as a model of the nasal epithelial barrier, despite their different anatomical origin, has been demonstrated by the obtained excellent correlation with the fully differentiated 3D human nasal epithelial model (MucilAir™) for 11 model drugs, as well as by the good correlation obtained with the human nasal epithelial cell line RPMI 2650. In addition, the permeability values determined in the two Calu-3 models correlated well with the intestinal permeability model Caco-2.
Collapse
|
4
|
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration). Benefits include, among others, a fast onset of action, non-invasiveness and direct access to the central nervous system. The nasal cavity is not only limited to local application (e.g. rhinosinusitis) but can also provide direct access to other sites in the body (e.g. the central nervous system or systemic circulation). However, both the anatomy and the physiology of the nose impose their own limitations, such as a small volume for delivery or rapid mucociliary clearance. To meet nasal-specific criteria, the formulator has to complete a plethora of tests, in vitro and ex vivo, to assess the efficacy and tolerance of a new drug-delivery system. Moreover, depending on the desired therapeutic effect, the delivery of the drug should target a specific pathway that could potentially be achieved through a modified release of this drug. Therefore, this review focuses on specific techniques that should be performed when a nasal formulation is developed. The review covers both the tests recommended by regulatory agencies (e.g. the Food and Drug Administration) and other complementary experiments frequently performed in the field.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Salade L, Wauthoz N, Deleu M, Vermeersch M, De Vriese C, Amighi K, Goole J. Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. Int J Nanomedicine 2017; 12:8531-8543. [PMID: 29238190 PMCID: PMC5713684 DOI: 10.2147/ijn.s147650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose–brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose–brain delivery of ghrelin.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, Université de Liège, Gembloux
| | | | - Carine De Vriese
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels
| |
Collapse
|
6
|
Kalashnikova I, Albekairi N, Ali S, Al Enazy S, Rytting E. Cell Culture Models for Drug Transport Studies. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Ong HX, Traini D, Young PM. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opin Drug Deliv 2013; 10:1287-302. [PMID: 23730924 DOI: 10.1517/17425247.2013.805743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The Calu-3 lung cell line has been shown to be a promising in vitro model of airway epithelia due to its similarity to in vivo physiology. Hence, over the past decade, it has found increasing applications in the pharmaceutical industry. AREAS COVERED This review focuses on the pharmaceutical applications of the Calu-3 cell line in areas such as mechanisms of drug transport, studying aerosol deposition, controlled release studies and identification of possible drug-drug interactions. The main findings of various studies, as well as the predictive potential of this model, are presented and discussed in this review. EXPERT OPINION There is still a lack of mechanistic knowledge regarding transport of inhaled therapeutics across the lungs. Cell culture models such as Calu-3 provide a simple and reproducible system to study the underlying mechanisms by which inhaled therapeutics interact with the lungs. However, more complex systems that integrate particle deposition onto different cell culture systems may be useful in addressing some fundamental questions to generate a better understanding of determinants that influences pulmonary drug dissolution, absorption, metabolism and efficacy. Ultimately the use of the Calu-3 cell line provides a basic research tool that enables the development of safer and more effective inhaled therapeutics.
Collapse
Affiliation(s)
- Hui Xin Ong
- Woolcock Institute of Medical Research, Respiratory Technology, Glebe, NSW, Australia
| | | | | |
Collapse
|
8
|
Pisal PB, Patil SS, Pokharkar VB. Rheological investigation and its correlation with permeability coefficient of drug loaded carbopol gel: influence of absorption enhancers. Drug Dev Ind Pharm 2012; 39:593-9. [PMID: 22663597 DOI: 10.3109/03639045.2012.692377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The present study was planned to investigate the effect of absorption enhancers on the microstructure of Losartan potassium gel and hence its influence on the diffusion of Losartan potassium across nasal mucosa. METHOD Losartan potassium loaded carbopol gel (1% w/v) with and without absorption enhancers was prepared. Polyethylene glycol (PEG) 4000 and ethanol were used as absorption enhancers. Microstructural elucidation of prepared gels was done using shear rheology. Ex vivo drug release studies were performed on the prepared gels. RESULTS It was observed that the absorption enhancers PEG 4000 and ethanol altered the gel microstructure. The prepared gels were viscoelastic in nature suggesting their suitability for topical application. Permeability coefficient of Losartan potassium loaded into gels was found to be inversely proportional to the storage modulus. Thus increase in storage modulus lead to slow drug diffusion. CONCLUSION The current study emphasizes on the fact that selection of polymeric carrier for nasal drug delivery and/or absorption enhancer strongly influence the microstructure of the gel and hence the pharmaceutical performance of the formulation.
Collapse
Affiliation(s)
- Prashant B Pisal
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, Maharashtra, India
| | | | | |
Collapse
|
9
|
Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: a comparison. Biochem Biophys Res Commun 2011; 415:579-85. [PMID: 22079636 DOI: 10.1016/j.bbrc.2011.10.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
Abstract
The barrier characteristics of polarized layers of Calu-3 and Caco-2 cell lines, as commonly used in vitro models of intestinal and airway mucosa, respectively, were investigated by assessing the translocation of model macromolecules and nanoparticles. The barrier capacity of the cell layers towards the movement of macromolecules and nanoparticulates differed considerably between the cell lines. Permeability studies revealed the existence of a notably larger solute molecular weight limit for paracellular diffusion in Caco-2 monolayers compared to Calu-3 cells. Removal of mucus in Calu-3 cells resulted in cell layers exhibiting a larger macromolecular permeability, in addition to improved nanoparticle translocation. Microscopic examination of the tight junctions, as cellular features that play a major role in preventing transepithelial movement of macromolecules, revealed that the appearance of cell-cell boundaries was notably different in the two cell lines, which could explain the differences in macromolecular permeability. The data overall showed that epithelial layers of airway Calu-3 and intestinal Caco-2 cell cultures in vitro exhibit a different level of restrictiveness and this is due to the cell morphology and the presence of mucus.
Collapse
|
10
|
Chen J, Zhang C, Liu Q, Shao X, Feng C, Shen Y, Zhang Q, Jiang X. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Target 2011; 20:174-84. [PMID: 21992548 DOI: 10.3109/1061186x.2011.622396] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Solanum tuberosum lectin (STL) conjugated poly (DL-lactic-co- glycolic acid) (PLGA) nanoparticle (STL-NP) was constructed in this paper as a novel biodegradable nose-to-brain drug delivery system. The in vitro uptake study showed markedly enhanced endocytosis of STL-NP compared to unmodified PLGA nanoparticles (NP) in Calu-3 cells and significant inhibition of uptake in the presence of inhibitor sugar (chitin hydrolysate). Following intranasal administration, coumarin-6 carried by STL-NP was rapidly absorbed into blood and brain. The AUC((0→12 h)) of coumarin-6 in blood, olfactory bulb, cerebrum and cerebellum were about 0.77-, 1.48-, 1.89- and 1.45-fold of those of NP, respectively (p < 0.05). STL-NP demonstrated 1.89-2.45 times (p < 0.01) higher brain targeting efficiency in different brain tissues than unmodified NP. Enhanced accumulation of STL-NP in the brain was also observed by near infrared fluorescence probe image following intranasal administration. The fluorescence signal of STL-NP appeared in olfactory bulb, cerebrum and brainstem early at 0.25 h. The signal in olfactory bulb decreased gradually after 2 h, while the obvious signal in brainstem, cerebrum and cerebellum lasted for more than 8 h. The STL-NP safety experiments showed mild cytotoxicity and negligible cilia irritation. These intriguing in vitro and in vivo results suggest that STL-NP might serve as a promising brain drug delivery system.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|